摘要
This paper reports the DC steady-state current-voltage and conductance-voltage characteristics of a Bipolar Field-Effect Transistor (BiFET) under the unipolar (electron) current mode of operation, with bipolar (electron and hole) charge distributions considered. The model BiFET example presented has two MOS-gates on the two surfaces of a thin pure silicon base layer with electron and hole contacts on both edges of the thin base. The hole contacts on both edges of the thin pure base layer are grounded to give zero hole current. This 1-transistor analog-RF Basic Building Block nMOS amplifier circuit, operated in the unipolar current mode, complements the 1-transistor digital Basic Build Block CMOS voltage inverter circuit, operated in the bipolar-current mode just presented by us.
This paper reports the DC steady-state current-voltage and conductance-voltage characteristics of a Bipolar Field-Effect Transistor (BiFET) under the unipolar (electron) current mode of operation, with bipolar (electron and hole) charge distributions considered. The model BiFET example presented has two MOS-gates on the two surfaces of a thin pure silicon base layer with electron and hole contacts on both edges of the thin base. The hole contacts on both edges of the thin pure base layer are grounded to give zero hole current. This 1-transistor analog-RF Basic Building Block nMOS amplifier circuit, operated in the unipolar current mode, complements the 1-transistor digital Basic Build Block CMOS voltage inverter circuit, operated in the bipolar-current mode just presented by us.
基金
supported by the CTSAH Associates (CTSA)
founded by the late Linda Su-Nan Chang Sah,in memory of her 70th year.