期刊文献+

复杂空间接触模式下传染病蔓延模拟建模 被引量:3

Complex spatial contact pattern simulation of the spread of infectious diseases
原文传递
导出
摘要 针对现代社会越来越复杂的交互行为,提出了一种离散形式的空间分区模型预测传染病蔓延。该模型考虑了现代社会个体之间复杂的空间接触模式,以及真实情况下普遍存在的人群异质性和分布异质性。基于该模型在地理信息系统环境中建立了传染病蔓延的可视化模拟程序。模拟结果表明,该模型能较真实地模拟现实环境下传染病的蔓延过程,可为公共卫生应急中传染病疫情事件的预测预警和应急处置提供决策支持。 Increasingly complex interactions in modern societies are resulting in more complex infection disease spread scenarios. This paper presents a discrete spatial patch model for simulating the complete spread of infectious diseases. The model describes the complex spatial contact patterns among individuals and the effects of population and distribution heterogeneities. A simulation program developed in a geographic information systems (GIS) environment shows typical local and global patterns of contagion. Thus the model accurately depicts the spread of infectious diseases in the real world. This model can facilitate prevention and control of contagious health emergencies by providing decision makers with useful clues.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期183-186,共4页 Journal of Tsinghua University(Science and Technology)
基金 中国博士后科学基金资助课题(20070410552)
关键词 传染病 空间建模 地理信息系统 应急 infectious diseases spatial modeling geographic information systems (GIS) emergency
  • 相关文献

参考文献6

  • 1Sirakoulis G C, Karafyllidis I, Thanailakis A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation [J]. Ecological Modelling, 2000, 133: 209- 223.
  • 2Wang W D. Global behavior of an SEIRS epidemic model with time delays [J].Applied Mathematics Letters, 2002, 15 : 423 - 428.
  • 3Ahmed E, Agiza H N. On modeling epidemics including latency, incubation and variable susceptibility[J]. Physica A, 1998, 253: 347-352.
  • 4Benyoussef A, Hafidallah N E, Elkenz A, et al. Dynamics of HIV infection on 2D cellular automata[J]. Physica A, 2003, 322: 506-520.
  • 5Willox R, Grammaticos B, Carstea A S, et al. Epidemic dynamics: Discrete-time and cellular automaton models [J]. Physica A, 2003, 328: 13-22.
  • 6White S H, del Rey A M, Rodriguez Sanchez G. Modeling epidemics using cellular automata [J].Applied Mathematics and Computation, 2007, 186:193-202.

同被引文献44

  • 1BARTON L.Crisis in Organizations II[M].2nd ed.Cincinnati,OH:College Divisions South-Western,2000.
  • 2HELBING D,KUHNERT C.Assessing Interaction Networks with Applications to Catastrophe Dynamics and Disaster Management[J].Physica A:Statistical Mechanics and Its Applications,2003,328(3/4):584-606.
  • 3BUZNA L,PETERS K,HELBING D.Modelling the Dynamics of Disaster Spreading in Networks[J].Physica A,2006,363(1):132-140.
  • 4KERMACK W O,MCKENDRICK A G.Contributions to the Mathematical Theory of Epidemics[J].Proc Roy Soc Lond B Biol Sci,1927,115(5):700-721.
  • 5KERMACK W O,MCKENDRICK A G.Contributions to the Mathematical Theory of Epidemics Part II[J].Proc Roy Soc Lond B Biol Sci,1932,138(1):55-83.
  • 6JIN Z,MA Z E.The Stability of an SIR Epidemic Model with Time Delays[J].Mathematical Biosciences and Engineering,2006,3(1):101-109.
  • 7NEWMAN M E J.The Structure and Function of Complex Networks[J].SIAM Review,2003,45(2):167-256.
  • 8LIN W,CAI X.Statistical Analysis of Airport Network of China[J].Physical Review E,2004,69(4):046106.
  • 9SLOOT P M A,IVANOV S V,BOUKHANOVSKY A V,et al.Stochastic Simulation of HIV Population Dynamics Through Complex Network Modeling[J].International Journal of Computer Mathematics,2008,85(8):1 175-1 187.
  • 10BARABSI A L,ALBERT R.Emergence of Scaling in Random Networks[J].Science,1999,286(5439):509-512.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部