期刊文献+

利用分区处理和水平集算法分割序列三维乳腺MRI 被引量:5

3-D breast MRI sequence segmentation based on region and level set algorithm
原文传递
导出
摘要 对比增强的磁共振成像技术是检测乳腺肿瘤的新方法,但需处理大量随时间变化的三维影像序列。为了从这种四维影像中分割出乳房组织,该文提出了自动分区域分割方法。先分割乳房与空气,并统计乳房部分的灰度;再分割乳房与胸腔,将前面统计出的乳房灰度作为先验知识设定初始轮廓和特征图像,采用基于阈值区间的三维水平集算法,并将前一时间点的结果作为后一时间点分割的初始轮廓,从而实现自动的四维分割。临床数据实验表明,该方法可有效地分割四维乳腺磁共振影像,且自动化程度和分割准确度均较高。 Contrast-enhanced magnetic resonance imaging (MRI) is used to detect breast tumors by analyzing multiple 3-D image sequences that change with time. A multistage processing procedure was developed to segment the breast tissue in these 4-D MRI. The images are first divided into different regions. Then the breast area in the anterior part of the image is segmented from the background to estimate the mean intensity of the breast tissue. The breast area is segmented from the chest by using the estimated mean breast intensity as initial guess of the grey level of the contour between the breast and the chest. A threshold-based 3-D level set algorithm was developed to identify the boundary surface between the chest and the breast by using the estimated breast intensity as a feature image. The segmentation of one 3-D image was used for the initial estimate of the boundary on the following image to achieve automatic 4-D segmentation. Clinical trials show that this processing procedure is effective for automatic segmentation of 4-D breast MRI.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第3期419-423,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家“八六三”高技术项目(2006AA02Z4E7) 国家“九七三”重点基础研究项目(2006CB705700) 清华-裕元医学科学研究基金
关键词 图像处理 乳腺 影像分割 水平集算法 image processing breast image segmentation level set algorithm
  • 相关文献

参考文献7

  • 1Kinkel K, Helbich T H, Esserman L J, et al. Dynamic high spatial-resolution MR imaging of suspicious breast lesions: Diagnostic criteria and inter observer variability[J]. AJR Am J Roentgenol, 2000, 175:35 -43.
  • 2Engeland S V, Snoeren P R, Huisman H, et al. Volumetric breast density estimation from full-field digital mammograms[J]. IEEE Transactions on Medical Imaging, 2006, 25(3):273 - 282.
  • 3赵斌.磁共振成像新技术对乳腺肿块临床应用研究[D].济南:山东大学,2004.
  • 4Yoo S K, Wang G, Rubinstein J, et al. Semi-automatic segmentation of the cochlea using real-time volume rendering and regional adaptive snake modeling [J]. Journal of Digital Imaging, 2001, 14(4): 173- 181.
  • 5刁现芬,陈思平,梁长虹,汪元美.基于阈值区间的水平集算法在耳蜗分割中的应用[J].浙江大学学报(工学版),2006,40(2):262-266. 被引量:5
  • 6Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266- 280.
  • 7朱付平,田捷,林瑶,葛行飞.基于Level Set方法的医学图像分割[J].软件学报,2002,13(9):1866-1872. 被引量:48

二级参考文献22

  • 1庞全,苏佳,段会龙.基于四叉树和交叉熵的面向对象图像分割方法[J].浙江大学学报(工学版),2004,38(12):1615-1618. 被引量:12
  • 2KAWANO A,SELDON H L,CLARK GM.Computer-aided three dimensional reconstruction in human cochlear maps:Measurement of the lengths of organ of Corti,outer wall,inner wall,and Rosenthal's canal[J].Annals of Otology,Rhinology,and Laryngology,1996,105:701-709.
  • 3WANG G,VANNIER M W,SKINNER M W,et al.Unwrapping cochlear implants by spiral CT[J].IEEE Transactions on Biomedical Engineering,1996,43(9):891-900.
  • 4HIMI T,KATAURA A,SAKATA M,et al.Threedimensional imaging of the temporal bone using a helical CT scan and its application in patients with cochlear implantation[J].Journal of Oto-Rhino-Laryngology & Its Related Specialties,1996,58(6):298-300.
  • 5KETTEN D R,SKINNER M W,WANG G,et al.In vivo measures of cochlear length and nucleus cochlear implant array insertion depth[J].Annals of Otology,Rhinology,and Laryngoiogy,1998,175:1-16.
  • 6YOO S K,WANG G,RUBINSTEIN J T,et al.Threedimensional geometric modeling of the cochlea using helico-spiral approximation[J].IEEE Transactions on Biomedical Engineering,2000,47(10):1392-1402.
  • 7OSHER S,SETHIAN J A.Fronts propagating with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulation[J].Journal of Computer Physics,1988,79(1):12-49.
  • 8MALLADI R,SETHIAN J A,VEMURI B C.Shape modeling with front propagation:A level set approach[J].IEEE Transctions on PAMI,1995,17(2):158-175.
  • 9HOHNE K H,HANSON W A.Interactive 3D segmentation of MRI and CT volumes using morphological operations[J].Journal of Computer Assisted Tomography,1992,16(2):285-294.
  • 10SALVIROONPORN P,ROBATINO A,ZAHAJSZKY J,et al.Real-time interactive three-dimensional segmentation[J].Academic Radiology,1998,5(1):49-56.

共引文献49

同被引文献76

  • 1王文杰,封建湖.基于变分Level Set方法的图像分割[J].计算机工程与应用,2006,42(18):68-70. 被引量:3
  • 2周则明,项杰,王洪元,何春.水平集方法中窄带构造技术[J].系统工程与电子技术,2007,29(7):1201-1204. 被引量:2
  • 3KASS M,WITKIN A,TERZOPOULOS D.Snakes:active contourmodels[J].International Journal of Computer Vision,1987,1(4):321-331.
  • 4BRIGGER P,HOEG J,UNSER M.B-spline nakes:a flexible tool forparametric contour detection[J].IEEE Trans on Image Proces-sing,2000,9(9):1484-1496.
  • 5PRECIOSO F,BARLAUD M.Smoothing B-spline active contour forfast and robust image and video segmentation[C]//Proc of Interna-tional Conference on Image Processing.2003:137-140.
  • 6YEZZI A,KICHENASSAMY S,KUMAR A,et al.A geometric Snakesmodel for segmentation of medical imagery[J].IEEE Trans onMedical Imaging,1997,16(2):199-209.
  • 7OSHER S,SETHIAN J.Fronts propagating with curvature dependentspeed:algorithms based on the Hamilton-Jacobi formulation[J].Jour-nal of Computational Physics,1988,79(1):12-49.
  • 8OSHER S,SHU C W.High-order essentially nonoscillatory schemesfor Hamilton-Jacobi equation[J].SIAM Journal of Numerical Ana-lysis,1991,28(4):907-922.
  • 9OSHER S,SETHIAN J A.Level set methods and dynamic implicitsurfaces[M].New York:Springer-Verlag,2002:22-114.
  • 10GIGA Y.Surface evolution equation:a level set method[M].[S.l.]:Birkhuser Basel,2002:56-85.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部