期刊文献+

MC_(20)F_(20)(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究 被引量:1

Density functional study on the geometric and electronic properties of MC_(20)F_(20)(M=Li,Na,Be,Mg)
原文传递
导出
摘要 采用密度泛函理论(density functional theory,DFT)中的广义梯度近似(generalized gradient approximation,GGA)对MC20F20(M=Li,Na,Be和Mg)的几何结构和电子性质进行了计算研究.几何结构研发现:随着内掺原子序数的增加,金属原子M对C20F20中的C—C键的影响越来越大,而对C—F键的影响甚微.掺杂能计算表明:MC20F20的掺杂能均为负值,需要在一定的实验条件下才能被合成.内掺碱金属和碱土金属分别产生了两类截然不同的能隙和磁性.其中,内掺碱金属的能隙非常小,且带有1μB的净磁矩,表现出磁性;而内掺碱土金属的能隙比C60的能隙还大,净自旋为0,表现出非磁性. The generalized gradient approximation (GGA) based on density functional theory(DFT)is used to analyze the geometric and electronic properties of the endohedral fullerene MC 20 F 20 (M=Li,Na,Be,and Mg). The analysis of geometric structure indicates that the C—C bond length increases with the atomic number M,while the C—F bond length hardly changes. The doping energy of all kinds of MC 20 F 20 is negative,indicating that the encapsulation would proceed under certain conditions. The electronic structure demonstrates that MC 20 F 20 (M=Li and Na) and MC 20 F 20 (M=Be and Mg) have different energy gaps and magnetic moments. The energy gaps of MC 20 F 20 (M=Li and Na) are very small,while the energy gaps of MC 20 F 20 (M=Be and Mg) are larger than that of C 60. On the other hand,the MC 20 F 20 (M=Li and Na) have 1μB magnetic moment,whereas the magnetic moments of MC 20 F 20 (M=Be and Mg) are zero.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第3期1863-1869,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10174039) 江苏省自然科学基金(批准号:BK2006204) 南京理工大学优秀青年学者基金(批准号:NJUST200705)资助的课题~~
关键词 富勒烯 几何结构 电子结构 密度泛函 C 20 F 20 ,MC 20 F 20 ,fullerene,geometric structure,electronic property
  • 相关文献

参考文献21

  • 1Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott L T, Gelmont M, Olevano D, Von Issendorff B 2000 Nature 407 60
  • 2Cross R J, Saunders M, Prinzbach H 1999 Org. Lett. 1 1479
  • 3Paquette L A, Temansky R J, Balogh D W, Kentgen G 1983 J. Am. Chem. Soc. 105 5446
  • 4Beckhaus H D, Riichardt C, Lagerwall D R, Paquette L A, Wahl F, Prinzbach H 1994 J. Am. Chem. Soc. 116 11775
  • 5Jimenez Vazquez H A, Tamariz J, Cross R J 2001 J. Phys. Chem. A 105 1315
  • 6Sehulman J M, Disch R L 1978 J. Am. Chem. Soc. 100 5677
  • 7Dixon D A, Deerfield D, Graham G D 1981 Chem. Phys. Lett. 78 161
  • 8Disch R L, Schulman J M 1981 J. Am. Chem. Soc. 103 3297
  • 9Moran D, Stahl F, Jemmis E D, Schaefer H F, Schleyer P V 2002 J. Phys. Chem. A 106 5144
  • 10Prinzbach H, Weber K 1994 Angew. Chem. Int. Ed. Engl. 33 2239

二级参考文献29

  • 1Taylor R,Hare J P,Abdul S et al 1990 Chem.Soc.Chem.Comm 14 23
  • 2Johnson R D,Meijer G,Salem J R et al 1991 J.Am.Chem.Soc.113 3619
  • 3Ettl R,Chao I,Diederich F,Whetten R L 1991 Nature 353 149
  • 4Diederich F,Whetten R L 1992 Acc.Chem.Res 25 119
  • 5Kikuchi K,Nakahara N,Wakabayashi T et al 1992 Nature 357 142
  • 6Taylar R,Langley G J,Avent A G et al 1993 J.Chem.Soc.Perkin Trans.2 1029
  • 7Dennis T J S,Kai T,Tomiyama T et al 1998 Chem.Commun.619
  • 8Tagmatarchis N,Avent A G,Prassides K et al 1999 Chem.Comm 10 23
  • 9Nagase S,Kobayshi K,Akasaka T 1999 Theo.Chem.461 97,Shigeru N J 2001 Mol.Graphics.Model.19.2
  • 10Wan T S M,Zhang H W,Nakane T et al 1998 J.Am.Chem.Soc.120 6896

共引文献10

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部