期刊文献+

求解矩形条带装箱问题的动态匹配启发式算法 被引量:5

A Dynamic-Fit Heuristic Algorithm for the Rectangular Strip Packing Problem
下载PDF
导出
摘要 矩形条带装箱问题(RSPP)是指将一组矩形装入在一个宽度固定高度不限的矩形容器中,以期获得最小装箱高度.RSPP理论上属于NP难问题,在新闻组版、布料下料以及金属切割等工业领域中有着广泛的应用.为解决该问题,采用了一种混合算法,即将一种新的启发式算法——动态匹配算法——与遗传算法结合起来.混合算法中,动态匹配算法能根据4类启发式规则动态选择与装填区域相匹配的下一个待装矩形,同时将装箱后所需容器高度用遗传算法的进化策略进行优化.对2组标准测试问题的计算结果表明,相对于文献中的已有算法,提出的算法更加有效. Given a set of small rectangular pieces of different sizes and a rectangular container of fixed width and infinite length, the rectangular strip packing problem (RSPP) consists of orthogonally placing all the pieces within the container, without overlapping, such that the overall length of the packing is minimized. RSPP belongs to NP-hard problem in theory and has many industrial applications such as the composition of news, the cutting of clothing and the cutting of metal, etc. To solve the rectangular strip packing problem, a hybrid algorithm, which combines a novel heuristic algorithm--dynamic-fit heuristic algorithm (DFHA), with the genetic algorithm, is adopted. The DFHA algorithm can dynamically select the better-fit rectangle for packing, according to the width-fit first (WFF) rule, the height-fit first (HFF) rule, the placeable first (PF) rule, and the biggest- rectangle first (BRF) rule, and the evolutionary capability of genetic algorithm is used to optimize the height of the packing which is calculated by DFHA. The hybrid algorithm is tested on two sets of benchmark problems taken from the previous literature. The first set includes 21 instances and the other one includes 13 instances. The computational results show that the hybrid algorithm is more effective than the existing algorithms from the previous literature.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第3期505-512,共8页 Journal of Computer Research and Development
关键词 NP难问题 矩形条带装箱问题 混合算法 动态匹配启发式算法 遗传算法 NP-hard problem rectangular strip packing problem (RSPP) hybrid algorithm dynamic-fit heuristic algorithm (DFHA) genetic algorithm (GA)
  • 相关文献

参考文献19

  • 1Gilmore P C, Gomory R E. A linear programming approach to the cutting stock problem [J]. Operations Research, 1961, 9(6): 849-859
  • 2Christofides N, Whitlock C. An algorithm for two- dimensional cutting problems [J]. Operations Research, 1977, 25(1): 30-44
  • 3Beasley J E. An exact two-dimensional non-guillotine cutting tree search procedure [J]. Operational Research, 1985, 32 (1) : 49-64
  • 4Hifi M, Zissimopoulos V. Constrained two-dimensional cutting: An improvement of ehristofides and whitloek's exact algorithm [J]. Journal of the Operational Research Society, 1997, 48(3): 321-331
  • 5Lesh N, Marks J, McMahon A, et al. Exhaustive approaches to 2D rectangular perfect packings [J]. Information Processing Letters, 2004, 90 (1) : 7-14
  • 6Baker B S, Jr Coffman E G, Rivest R L. Orthogonal packings in two dimensions [J]. SIAM Journal on Computing, 1980, 9(4): 808-826
  • 7Chazelle B. The bottom left bin packing heuristic: An efficient implementation [J]. IEEE Trans on Computers, 1983, C32(8): 697-707
  • 8Burke E K, Kendall G, Whitwell G. A new placement heuristic for the orthogonal stock-cutting problem [J]. Operations Research, 2004, 52(4): 655-671
  • 9Chen M, Huang W Q. A two-level search algorithm for 2D rectangular packing problem [J]. Computers & Industrial Engineering, 2007, 53(1): 123-136
  • 10Cui Y D, Yang Y L, Cheng X , et al. A recursive branch- and-bound algorithm for the rectangular guillotine strip packing problem [J]. Computers & Operations Research, 2008, 35(4): 1281-1291

二级参考文献1

共引文献30

同被引文献53

  • 1韩喜君,丁根宏.矩形件优化排样问题的混合遗传算法求解[J].计算机技术与发展,2006,16(6):219-221. 被引量:4
  • 2孙波,齐欢,张晓盼,蔡霄.三峡-葛洲坝联合调度系统闸室编排快速算法[J].计算机技术与发展,2006,16(12):19-21. 被引量:8
  • 3Huang W,Chen D,Xu R.A new heuristic algorithm for rectangle packing[J].Computers & Operations Research,2007,34(11):3270-3280.
  • 4Hopper E,Turton B.An empirical investigation of meta-heuristic and heuristic algorithm for a 2D packing problem[J].European Journal of Operational Research,2000,128(1):34-57.
  • 5Alvarez-Valdes,Parreno F,Tamarit J M.A tabu search algorithm for two-dimensional non-guillotine cutting problems[J].European Journal of Operational Research,2007,183(3):1167-1182.
  • 6Bortfeldt A.A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces[J].European Journal of Operational Research,2006,172:814-837.
  • 7Hifi M.Hallah R.A hybrid algorithm for t he two-dimensiorml layout problem:The cases of regular and irregularshapes[J].International Transactions in Operational Research,2003,10(3):195-216.
  • 8Lodi A, Martello S, Monaci M. Two-dimensional Packing problems: A survey. European Journal of Operational Re- search,2002,141 (2):241-252.
  • 9Hopper E, Turton B. An empirical investigation of meta- heuristic and heuristic algorithms for a 2D Packing prob- lem, European Journal of Operational Research,2001,128 (1):34-57.
  • 10Prasad A S, Rao S. A mechanism design approach to resource procurement in cloud computing[J]. IEEE Transactions on Computers, 2014, 63(1): 17-30.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部