期刊文献+

薄壁曲梁振动分析的样条有限杆元法 被引量:1

THE SPLINE FINITE MEMBER ELEMENT METHOD IN VIBRATION ANALYSIS OF THIN-WALLED CURVED BEAMS
原文传递
导出
摘要 该文提出采用分段转换B3样条插值函数模拟横截面的翘曲位移,利用有限杆元对薄壁曲梁进行振动分析的样条有限杆元法。方法采用静力分析中位移的精确解代替振动时的可能位移,应用Hamilton变分原理导出刚度矩阵,形成有限元列式,进而求出薄壁曲梁的振动频率和相应的振型,并用ANSYS有限元程序进行校核。数值算例表明:方法具有前处理简单、收敛速度快、精度高等特点。 Presented herein is a spline finite member element method which adopts transformed B3 spline function to simulate the warping displacements and uses finite member elements for vibration analysis of the thin-walled curved beams. The general solution of displacements of static analysis is used in this method to replace the possible displacements in vibration, and the stiffness matrix is developed by using Hamiltonian variational principle, then the natural fi'equencies and corresponding vibration modes are obtained. In order to illustrate the accuracy and practical usefulness of this method, numerical solutions by this study are presented and compared with solutions by ANSYS. The presented method is simple in preprocess, convergent and sufficiently accurate.
作者 夏飞 辛克贵
出处 《工程力学》 EI CSCD 北大核心 2009年第3期1-5,共5页 Engineering Mechanics
基金 国家自然科学基金项目(50578085)
关键词 薄壁结构 曲梁:样条有限杆元法 振动分析 分段转换B3样条函数 thin-walled structure curved beams the spline finite member element method vibration analysis transformed B3 spline function
  • 相关文献

参考文献16

  • 1Vlasov V Z. Thin-walled elastic beams [M]. Washington D.C: National Science Foundation, 1961.
  • 2Timoshenko S P, Gere J M. Theory of elastic stability [M]. New York: McGraw-Hill, 1961.
  • 3Charpie J P, Burroughs C B. An analytic model for the free in-plane vibration of beams of variable curvature and depth [J]. Journal of the Acoustical Society of America, 1993, 94: 866-879.
  • 4Scott J F M, Woodhouse J. Vibration of an elastic strip with varing curvature [J]. Philosophical Transactions of the Royal Society of London. Physical Sciences and Engineering, 1992, 339: 587-625.
  • 5Cortinez V H, Piovan M T, Rossi R E. Out of plane vibrations of thin walled curved beams considering shear flexibility [J]. Structural Engineering and Mechanics, 1999, 8: 257-272.
  • 6Piovan M T, Cortinez V H, Rossi R E. Out-of-plane vibrations of shear deformable continuous horizontally curved thin-waUed beams [J]. Journal of Sound and Vibration, 2000, 237:101 - 118.
  • 7Gendy A S, Saleeb A E Vibration analysis of coupled extensional/flexural/torsional modes of curved beams with arbitrary thin-walled sections [J]. Journal of Sound and Vibration, 1994, 174: 261-274.
  • 8Kim M Y, Kim N L Min B C. Analytical and numerical study on spatial free vibration of nonsymmetric thin-walled curved beams [J]. Journal of Sound and Vibration, 2002, 258: 595-618.
  • 9吴亚平,赖远明,朱元林,刘世忠,张学富.考虑剪滞效应的薄壁曲梁有限单元法[J].工程力学,2002,19(4):85-89. 被引量:26
  • 10吴亚平,赖远明,张学富,朱元林.曲线箱梁静动力特性的有限段元分析[J].铁道学报,2001,23(5):81-84. 被引量:8

二级参考文献20

  • 1吴秀水.考虑剪切变形的薄壁杆件分析[J].工程力学,1993,10(1):76-84. 被引量:15
  • 2钱寅泉,倪元增.薄壁箱形大曲率梁桥理论分析[J].土木工程学报,1993,26(5):22-30. 被引量:9
  • 3黄剑源,谢旭.薄壁曲线杆系结构空间分析的刚度法[J].土木工程学报,1994,27(5):3-19. 被引量:37
  • 4王全凤,李华煜.任意截面形状薄壁压杆的稳定[J].土木工程学报,1996,29(6):14-24. 被引量:9
  • 5何福宝.薄壁曲杆有限元法[J].固体力学学报,1981,2(2):141-157.
  • 6Usami T., Koh, S. R. Large displacement theory of thin-walled curved members and its application to lateral-torsional buckling analysis of circular arches[J]. Int. J. Solids Structures, 1980, 16: 71-95.
  • 7Yang Y B. Static stability of curved thin-walled beams [J]. J. Engrg. Mech., ASCE, 1986, 112(4): 821-841.
  • 8Vlasov V Z. Thin-Walled Elastic Beams [M]. Washington D. C.: National Science Foundation, 1961.
  • 9Kang Y J, Yoo C H. Thin-walled curved beams. I: Formulation of nonlinear equations[J]. J Engrg. Mech., ASCE, 1994, 120(10): 2072-2101.
  • 10龙驭球,辛克贵.多边形截面框筒结构的能量解法[J]建筑结构学报,1985(03).

共引文献62

同被引文献16

  • 1徐芝纶.弹性力学简明教程[M].2版.北京:高等教育出版社,1983:8-9:119-159.
  • 2Schafer B W. Review: The direct strength method of cold-formed steel member design [J]. Journal of Constructional Steel Research,2008,54(2/3) : 766-278.
  • 3Davies J M, Leach P. First order generalised beam theory[J]. Journal of Constructional Steel Research, 1994,31 (2/3) : 187-220.
  • 4Silvestre N, Camotim D. First-order generalised beam theory for arbitrary orthotropic materials [J]. Thin- Walled Structures, 2002,40 : 755-789.
  • 5Casafont M, Marimon F, Pastor M M. Calculation of pure distortional elastic buckling loads of members subjected to compression via the finite element method [J]. Thin-Wailed Structures,2009,47(6/7) : 701 -729.
  • 6Goncalves R,Dinis P B,Camotim D. GBT formulation to analyse the first-order and buckling behaviour of thin- walled members with arbitrary cross-sections [J]. Thin- Walled Structures, 2009,47 : 583-600.
  • 7Jansson J,Andreassen M J. Distortional eigenmodes and homogeneous solutions for semi-discretized thin-walled beams [J]. Thin-Walled Structures, 2011,49 (6) : 691- 707.
  • 8Cheung Y K,Tham L G. The finite strip method [M]. CRC Press, 1998.
  • 9Adciny S, Schafer B W. A full modal decomposition of thin-walled, single-branched open cross-section members via the constrained finite strip method [J]. Journal of Constructional Steel Research, 2008,64:12- 29.
  • 10Rust W, Schweizerhof K. Finite element limit load analysis of thin-walled structures by ANSYS(implicit), LS-DYNA (explicit) and in combination [J]. Thin Walled Structures, 2003,41 (2/3) : 227-244.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部