期刊文献+

复杂背景下的人耳检测方法 被引量:1

Ear Detection Method in Complex Background
下载PDF
导出
摘要 本文在借鉴人脸检测算法的基础上,对现有的人耳检测方法进行研究,针对人耳区域小、共性特征少、复杂背景下难以检测等特点,提出了一种分阶段优化的静态彩色复杂背景下的人耳检测方法。首先采用肤色分割将检测范围缩小至肤色区域;接着利用侧脸的先验知识再次筛选;然后对图像进行边缘提取,在边缘图像中利用人耳含有丰富边缘信息的特点进行区域搜索以确定人耳。在该方法中,彩色图像的肤色信息和灰度图像的多尺度边缘以及人耳自身特征被结合起来,对解决人耳共性特征在复杂背景下难以被提取的问题具有较好的效果。实验结果表明,该算法在复杂背景下是有效的。 Based on the research of human-face detection, existing ear-detection methods are investigated in this paper, and a new optimized detecting method is presented to solve difficulties in ear detection such as small region, few common features, complex background and so on. Firstly, images are segmented into different regions with skin-color information and potential candidate regions are selected. Secondly, prior knowledge of side-face is applied to eliminate impossible regions. Thirdly, image edge is detected in different scales and ears are detected according to the rich edge information of human ear. In this method, the skin information of color image and multi-scale edge of grey image are combined with human ear features, which are employed to solve the problem that common features of ear image are difficult to extract in complex background. Experimental results show that this method is effective in complex background.
出处 《光电工程》 CAS CSCD 北大核心 2009年第3期140-145,共6页 Opto-Electronic Engineering
基金 重庆市自然科学基金资助项目(2008BB0035)
关键词 复杂背景 阈值分割 肤色分割 人耳检测 边缘区域 complex background threshold segmentation skin segmentation human ear detection edge region
  • 相关文献

参考文献10

二级参考文献40

  • 1Xiao De\|gui, Yu S heng\|sheng, Zhou Jing\|li School of Computer Science and Technol ogy, Huazhong University of Science and Technology,Wuhan 430074, Hubei, China.Motion Tracking with Fast Adaptive Background Subtraction[J].Wuhan University Journal of Natural Sciences,2003,8(01A):35-40. 被引量:1
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3王敏,穆志纯,徐正光,席德春.基于肤色模型的人耳检测系统[J].微计算机信息,2005,21(08S):51-53. 被引量:6
  • 4穆志纯,徐正光等.一种新的生物特征识别技术-人耳识别[J].生物识别研究新进展(二),2003
  • 5Iannarelli A. Ear Identification [ M ]. Free- mont, California: Paramount Publishing Company, 1989
  • 6M Burge,W Burger,W Mayr. Recognition and Learning with Polymorphic Structural Components[J].IEEE,1996:1015~4651
  • 7W Burger,M Burge,W Mayr. Learning to Recognize Generic Visual Categories Using a Hybrid Structural Approach[J].IEEE, 1996
  • 8Bele Moreno,angel Aanchez,Jose F Velez. Use Outer Ear Images for Personal Identification in Security Applications[C].In:IEEE-Proceedings of the 33rd Annual 1999 International Carnahan Conference(ICC), Madrid, 1999: 469~476
  • 9angel Aanchez,Jose F Velez. Human Identification using Low Resolution with Outer Ear Images :A Multiple Connectionist Framework[M]
  • 10David J Hurley,Mark S Nixon,John N Carter. Automatic Ear Recognition by Force Field Transformations[J].IEEE,2000

共引文献59

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部