期刊文献+

W_5×S_n的交叉数

The Crossing Number of W_5×S_n
下载PDF
导出
摘要 轮W5的六个顶点与另外n个顶点联边得到了一类特殊的图Hn.文中先证明了Hn的交叉数为Z(6,n)+n+「n/2」,并在此基础上证明了轮W5与星Sn的笛卡尔积的交叉数为Z(6,n)+n/2+3「n2」. Joining every vertex of W5 to all the other n vertices, we obtain a special graph denoted by Hn. In this paper, we n n proved that the crossing number of Z(6,n)+n+3[n/2] ,and the crossing number of Cartesian products of Z(6,n)+n+3[n/2].
出处 《山西师范大学学报(自然科学版)》 2009年第1期1-7,共7页 Journal of Shanxi Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771062) 教育部"新世纪优秀人才支持计划"项目(NCET-07-0276)
关键词 画法 交叉数 笛卡尔积 graph drawing crossing number star cartesian products
  • 相关文献

参考文献10

  • 1Bondy J A, Muty U S R. Graph Theroy with Application[ M]. London:North Holland Press. 1976.
  • 2Garey M R, Johnson D S. Crossing number is NP-complete [ J ]. SIAN J Algebraic Discrete Methods, 1993, 4:312 - 316.
  • 3Kleitaman D J. The erossing number of ks,n [J]. Comb. Theroy , 1970, 9:315-323.
  • 4Asano K. The crossing number of K1,3.n and K2.3.n [ J ]. J. Graph Theroy, 1986, 10 : 1 - 8.
  • 5Yuanqiu Huang. The crossing number of K1,4,n [ J ]. Discrete Mathematics, 2008, 308 (9) : 1634 - 1638.
  • 6Hanfei Mei, Yuanqiu Huang. The crossing numbers of K1,5,n [ J ].International Journal of Mathematical Combinatorics, 2007, (1):33 - 44.
  • 7Yang Yuansheng. The crossing number of C( n, { 1,3} ) [ J ]. Discrete Mathematics 2004, 289:107 - 118.
  • 8Klesc M. The crossing numbers of products of Paths with 5 - vertex graphs[ J]. J Disc math,2001,233 : 353 -359.
  • 9Klesc M. The crossing number of K2,3xP^n and K2,3xS^n [ J]. Mountains Math Publ, 1996, 9:51 - 56.
  • 10Drago, Bokal. On the crossing number of Cartesian products with paths[ J]. Combin Theor (serle B), 2007, 91:381 -384.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部