期刊文献+

完全条件置换子群对有限群结构的影响 被引量:1

Influences of Completely Conditionally Permutable Subgroups on the Structure of Finite Groups
下载PDF
导出
摘要 群G的子群H称为在G中完全条件置换的,如果对于G的每个子群K,都存在x∈〈H,K〉,使得HKx=KxH.本文利用子群的完全条件置换性来讨论有限群的结构,得到了有限群为超可解群,p-幂零群的充分条件. A subgroup H of a group G is said to be completely conditionally permutable in G if forevery subgroup k of G. There exists an element x ∈〈H , K) such that HK^z = K^zH. In this paper the structures of finite groups are discussed by means of the completely conditionally permutability of some subgroups, some sufficient conditions for a finite group to be supersolvable orp- nilpotent are obtained.
作者 高建玲
出处 《山西师范大学学报(自然科学版)》 2009年第1期15-17,共3页 Journal of Shanxi Normal University(Natural Science Edition)
关键词 完全条件置换子群 超可解群 P-幂零群 completely conditionally permutable subgroups supersolvable group p-nilpotent group
  • 相关文献

参考文献2

二级参考文献9

共引文献32

同被引文献15

  • 1王坤仁.关于有限群的幂零性与p-幂零性的一些判别(英文)[J].四川师范大学学报(自然科学版),2006,29(5):505-508. 被引量:4
  • 2刘熠,王坤仁.某些弱c-正规子群对有限群结构的影响[J].四川师范大学学报(自然科学版),2007,30(3):270-274. 被引量:7
  • 3Srinivasan S.Two sufficient conditions for supersolvability of finite groups[J].Israel J Math,1980,35(3):210-214.
  • 4Wang Yan-ming.c-normality of groups and it's properties[J].J Algebra,1996,180:954-965.
  • 5Wang Yan-ming.Finite groups with some groups of Sylow subgroups c-supplemented[J].J Algebra,2000,224:467-478.
  • 6Zhu Lu-jing,Guo wen-bin,Shum K P.Weakly c-normal subgroups of finite groups and their properties[J].Commun Algebra,2002,30(11):5505-5512.
  • 7Li Yan-ming,Wang Yan-ming,Wei Hua-quan.The influency of π-quasinormal some subgroups of a finite group[J].Arch Math,2003,8:245-252.
  • 8Ramadan M,Shaalan A.Influency of π-quasinormality on maximal subgroups of Sylow groups of Fitting subgroup of a finite group[J].Arch Math,1991,56:521-527.
  • 9Wei Hua-quan.On c-normal maximal and minimal subgroups of Sylow subgroups of finite groupsII[J].Commun Algebra,2003,31(10):4807-4816.
  • 10徐明曜.有限群导引[M].北京:科学出版社,1999.54-61.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部