摘要
Following similar derivation of quasi-geostrophic Q vector (Q^C), a new Q vector (Q^N) is constructed in this study. Their difference is that the geostrophic wind in quasi-geostrophic Q vector is replaced by the wind in Q^N vector. The diagnostic analysis of Q^N vector is compared with that of Q^G vector in the case study of a typical Meiyu front cyclone (MYFC) occurred over Changjiang-Huaihe regions during 5-6 July 1991. The results show that the Q^N vector has more diagnostic advantages than Q^G vector does. Convergence of Q^N vector at 700 hPa is found to be a good indicator to mimic the horizontal distribution of precipitation. Q^N vector is further partitioned into four components: Q^Nalst (along-stream stretching),Q^Ncurv (curvature),Q^Nshdv (shear advection), and Q^Ncrst (cross-stream stretching) in a natural coordinate system with isohypse (PG partitioning). The application of Q^N PG partitioning in the MYFC torrential rain indicates that PG partitioning of Q can identify dominant physical processes. The horizontal distribution of 2V·Q^Nalst is similar to that of 2V·Q^N and mainly accounts for 2V·Q^N during the entire period of Meiyu. The effects of Q^Ncurv on rainfall enhancement fade from the mature stage to decay stage. Qshdv enhances precipitation significantly as the MYFC develops, and the effect weakens rapidly when the MYFC decays during its eastward propagation. Q^Ncrst shows little impacts on rainfall during the onset and mature phases whereas it displays significant role during the decay phase.Q^N alst and Q^Nshdv and Q^Ncrst show cancellation only during the decay period.
Following similar derivation of quasi-geostrophic Q vector (Q^C), a new Q vector (Q^N) is constructed in this study. Their difference is that the geostrophic wind in quasi-geostrophic Q vector is replaced by the wind in Q^N vector. The diagnostic analysis of Q^N vector is compared with that of Q^G vector in the case study of a typical Meiyu front cyclone (MYFC) occurred over Changjiang-Huaihe regions during 5-6 July 1991. The results show that the Q^N vector has more diagnostic advantages than Q^G vector does. Convergence of Q^N vector at 700 hPa is found to be a good indicator to mimic the horizontal distribution of precipitation. Q^N vector is further partitioned into four components: Q^Nalst (along-stream stretching),Q^Ncurv (curvature),Q^Nshdv (shear advection), and Q^Ncrst (cross-stream stretching) in a natural coordinate system with isohypse (PG partitioning). The application of Q^N PG partitioning in the MYFC torrential rain indicates that PG partitioning of Q can identify dominant physical processes. The horizontal distribution of 2V·Q^Nalst is similar to that of 2V·Q^N and mainly accounts for 2V·Q^N during the entire period of Meiyu. The effects of Q^Ncurv on rainfall enhancement fade from the mature stage to decay stage. Qshdv enhances precipitation significantly as the MYFC develops, and the effect weakens rapidly when the MYFC decays during its eastward propagation. Q^Ncrst shows little impacts on rainfall during the onset and mature phases whereas it displays significant role during the decay phase.Q^N alst and Q^Nshdv and Q^Ncrst show cancellation only during the decay period.
基金
Supported by National Natural Science Foundation of China under Grant Nos.40875025,40405009,and 40205008
Shanghal Natural Science Foundation of China under Grant No.08ZR1422900.