摘要
论文使用MCPSO(多群合作粒子群算法)的全局随机优化能力修正了传统BP神经网络的收敛速度过慢,容易出现局部最小值的缺点,并结合长沙第八水厂的供水量数据,使用优化后的BP网络进行日用水量的预测,结果表明优化后的BP算法在减少迭代次数和预测准确性方面都有非常大的提升。
In the paper, the stochastic global optimization technique of the MCPSO (multi-swarm cooperative particle swarm optimizer) is used to amend the traditional BP-NN due to the disadvantage of slow congruence and local minimization, and then the paper make a forecasting of urban daily water consumption with the data from the eighth water-factory in Changsha, using the BP-NN optimized, the new method is proved to improve the precision of forecasting and reduce the iterative times very much.
出处
《微计算机信息》
2009年第9期151-153,共3页
Control & Automation
基金
基金申请人:罗大庸
基金颁发部门:湖南省科技厅
项目名称:垃圾焚烧炉综合集成控制系统(2006GK3130)