期刊文献+

掺硼纳米非晶硅的太阳能电池窗口层应用研究 被引量:2

Growth and Characterization of Boron-Doped na-Si:H Films Used as Window Layer Material of Solar Cells
下载PDF
导出
摘要 本文通过等离子体增强化学气相沉积(PECVD)法沉积p型纳米非晶硅薄膜(na-Si∶H),系统地研究了掺杂气体比(B2H6/SiH4)、沉积温度、射频电源功率对薄膜结构、光学、电学性能的影响。研究表明,轻掺硼有利于非晶硅薄膜晶化,但随着掺硼量的增加,硼的"毒化"作用又使薄膜变为非晶态;与p型a-Si∶H相比,掺硼纳米硅薄膜的光学带隙Eopt较高,电导率较高,电导激活能较低,是一种很有潜力的太阳能电池窗口层材料。 The boron-doped, nano-amorphous silicon (na-Si:H) films were deposited by plasma enhanced chemical vapor deposition (PECVD) to fabricate the window layers of solar cells. The microstmctures and optical properties of the na-Si: H films were characterized by X-ray diffraction (XRD), Raman spectrometre and UV-VI spectophotometer. The influence of film growth conditions, including the gas flow ratios of B2H6/SiH4, RF power, the flow rate of the doping gas, and the substrate temperature, on the and properties of the film was studied. The results show that the boron content significantly affects the grain size and crystalline volume fraction of the na-Si : H films. For example, light boron doping favors crystallization of the na-Si: H. As boron dopant contents increases, the catalyst poisoning of boron results in amorphous phase. The B-doped na-Si: H has a larger optical band gap( Eopt = 1.99eV),higher conductivity and lower activation energy of conductivity than the p-type a-Si: H films. We suggest that the B-doped na-Si: H be a good window layer material of thin film solar-cells.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2009年第2期119-124,共6页 Chinese Journal of Vacuum Science and Technology
基金 国家重点基础研究发展计划(No.2007CB613403)(973计划) 浙江省科技计划项目纳米技术攻关及示范应用专项(No.2006C11118) 高等学校科技创新工程重大项目培育资金项目(No.705026)
关键词 等离子体增强化学气相沉积 纳米非晶硅 硼掺杂 掺杂比 光学带隙 Plasma enhanced chemical vapor deposition (PECVD), na-Si: H, Boron-doped, Doping gas ratio, Optical band gap
  • 相关文献

参考文献23

  • 1Adolf Goetzberger, Christopher Hebling, Hans-Wemer Schock. Photovoltaic materials, history, status and outlook[ J]. Materials Science and Engineering R,2003,40:1-46
  • 2Carlson D E, Wronski C R. Amorphous Silicon Solar Cell[ J]. Appl. Phys. Lett., 1976,28:671 - 673
  • 3Green M A. Recent developments in photovoltaics[ J ]. Solar Energy,2004,76:3 - 8
  • 4Staebler D L, Wronski C R. Reversible conductivity changes in discharge-produced amorphous Si [ J ]. Appl. Phys. Lett., 1977,31:292 - 294
  • 5Sukti Hazra, Swati Ray. Photovoltaic apphcation of nanomorph silicon thin films prepared by plasma enhanced chemical vapor deposition[ J]. Jpn. J. Appl. Phys., 1999,38 : 495 - 497
  • 6Sukti Hazra, Swati Ray. Nanocrystalline silicon as intrinsic layer in thin film solar cells[ J]. Solid State Communications, 1999,109:125- 128
  • 7Edelman F, Chack A, Weil R, et al. Structure of PECVD Si : H films for solar cell application[J]. Solar Energy Materials & Solar Cells,2003,77 : 125 - 143
  • 8陈庆东,张宇翔,郭敏,李红菊,高哲,王俊平.不同衬底上沉积硅薄膜的固相晶化研究[J].真空科学与技术学报,2008,28(3):230-234. 被引量:2
  • 9He Y L, Hu G Y, Yu M B, et al. Conduction mechanism of hydrogenated nanocrystalline silicon films[ J]. Physical Review B, 1999,59(19) : 15352 - 15357
  • 10Akihisa Matsuda, Toshihiko Yoshida, Satoshi Yamasaki, et al. Structural Study on Amorphous- Microcrystalline MixedPhase si:n Films[J]. Jap.J.Appl. Phy., 1981,20(6) :439 - 442

二级参考文献21

共引文献6

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部