期刊文献+

中国交易所债券市场分形特征的实证研究 被引量:12

Empirical Study on the Fractal Feature of Chinese Exchange Bond Market
原文传递
导出
摘要 分形是自然系统和社会经济系统中存在的一种非线性现象.对我国金融市场分形特征的现有研究集中于股票市场和外汇市场,本文研究了我国金融市场的另一重要组成部分-交易所债券市场的分形特征.实证结果显示,中国交易所债券市场的价格变动是以分数布朗运动方式进行的,所形成的运动轨迹呈现出典型的特征指数α<2的稳定帕累托分布,分形特征广泛存在于我国交易所债券市场各时间标度下的收益率中.最后提出了从市场的分形特征出发进行风险管理的思路. Fractal character widely exists in nature and socio-economic system. Existing studies fasten on stock market and foreign exchange market. This paper studies the fractal character of an important part of Chinese financial market, i.e., the exchange bond market. The result displays that China exchange bond market price fluctuation is processed by fractional Brownian Motion, the orbit is Stable Pareto Distribution with α 〈 2 character and fractal character exists in the in-sample different time span returns of exchange bond market. Since fractal models can provide us much information about volatility, we suppose the associated research between fractal and risk management would be significative.
出处 《数理统计与管理》 CSSCI 北大核心 2009年第2期324-330,共7页 Journal of Applied Statistics and Management
基金 国家自然科学基金(70501025) 国家自然科学基金(70771097)
关键词 交易所债券市场 分形特征 风险管理 exchange bond market, fractal characteristics, risk measure
  • 相关文献

参考文献12

  • 1Mantegna R Stanley. Scaling behavior in the dynamics of and economic index [J]. Nature, 1995, 376: 46-50.
  • 2Lux T, Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market [J]. Nature, 1999, 397: 498-503.
  • 3Farmer J D, Lo A W. Frontiers of finance: Evolution and efficient markets [J]. Proc Natl Acad Sci USA, 1999, 96: 999-1014.
  • 4丁培培,伍海华.基于两种方法的汇率波动的研究[J].统计与决策,2005,21(06S):12-13. 被引量:2
  • 5Bonanno G, Lillo F, Mantegna. Levels of complexity in financial markets [J]. Physica A, 2001, 299: 16-27.
  • 6Peters E E. Fractal Market Analysis:Applying Chaos Theory to Investment and Economics [M]. New York: Jone Wiley & Sons, 1994.
  • 7Mandelbrot B B. Amultifractal walk down WallStreet [J]. Scientific American, 1999, 298: 70-73.
  • 8Sun X, Chen H P, Wu Z Q, Yuan Y Z. Multifract alanalysis of Hang Sang Index in Hong Kong stock market [J]. Physica A, 2001, 291: 553-562.
  • 9魏宇,黄登仕.中国股票市场多标度分形特征的实证研究[J].系统工程,2003,21(3):7-12. 被引量:10
  • 10魏宇.金融市场的收益分布与EVT风险测度[J].数量经济技术经济研究,2006,23(4):101-110. 被引量:28

二级参考文献30

  • 1Lux T,Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market[J]. Nature,1999,397:498-450.
  • 2Farmer J D,Lo A W. Frontiers of finance:evolution and efficient markets[C]. Proc. Natl. Acad. Sci. USA, 1999,969:991-995.
  • 3Bonanno G,Lillo F,Mantegna R N. Levels of complexity in financial markets[J]. Physica A,2001,299:16-27.
  • 4Ausloos M, Vandewalle N, Boveroux. Applications of statistical physics to economic and financial topics[J].Physica A, 1999,274:229-240.
  • 5Stanley H E, Amaral L A N, Gabaix X. Similarities and differences between physics and economics[J].Physica A,2001,299:1-15.
  • 6Cont R,Potters M,Bouchaud J-P. In : Dubrulle B,Graner F,Sornette D(Eds. ). Scale invariance and beyond[C]. Berlin : Springer, 1997.
  • 7Plerou V,Gopikrishnan P,Amaral L A N,Meyer M,Stanley H E. Scaling of the distribution of price fluctuations of individual companies[J ]. Phys. Rev. E, 1999,60: 6519- 6529.
  • 8Gopikrishnan P,Plerou V,Amaral L A N, Meyer M,Stanley H E. Scaling of the distributions of fluctuations of financial market indices[J]. Phys. Rev. E, 1999,60: 5305- 5316.
  • 9Schmitt F,Schertzer D,Lovejoy S. Multifraetal fluctuations in finance[J]. Int. J. Theor. Appl. Fin. ,2000,3:361-364.
  • 10Mandelbrot B B. A multifractal walk down Wall Street [J]. Scientific American, 1999,298 : 70- 73.

共引文献59

同被引文献113

引证文献12

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部