期刊文献+

基于实体识别的在线主题检测方法 被引量:4

On-Line Topic Detection Using Named Entity Recognition
下载PDF
导出
摘要 为提高在线主题的检测效率,作者提出了一种基于实体识别技术的在线主题检测方法,利用新闻报道中的命名实体快速判断新到达报道与历史主题的关系,从而减少对报道间文本相似度的计算。实验结果显示,本文提出的方法能够在不牺牲检测准确率的基础上,显著提高在线主题检测的效率。 In order to make on-line topic detection more efficient, a new method is proposed based on named entity recognition. New method extracts news elements from stories. Based on news elements, query composition is used to detect story link. This process reduces complex computation of text similarities. Experimental result indicates that the proposed method performs on-link topic detection accurately and efficiently.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期227-232,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(60473051 60503037) 国家高技术研究发展计划专项经费(2006AA01Z230 2007AA01Z191)资助
关键词 在线主题检测 命名实体 实体识别 增量聚类 后缀树聚类 on-line topic detection named entity named entity recognition incremental clustering suffix tree clustering
  • 相关文献

参考文献11

  • 1Allan J, Carbonell J, Doddington G, et al. Topic detection and tracking pilot study: Final report// Proceedings of the DARPA Broadcast News Transcription and Understanding
  • 2Yang Y, Pierce T, Carbonell J. A study on retrospective and on-line event detection // Proceedings of 21^st Annual International ACM SIGIR Conference on Research and
  • 3Yang Y, Carbonell J, Brown R, et al. Learning approaches for detecting and tracking news events. IEEE Intelligent Systems: Special Issue on Applications of Intelligent Information Retrieval, 1999, 14(4):32-43
  • 4万小军,杨建武.在线新闻主题检测系统的设计与应用[J].华南理工大学学报(自然科学版),2004,32(z1):42-46. 被引量:7
  • 5Papka R. On-line new event detection, clustering, and tracking[ D]. Amherst: Department of Computer Science, University of Massachusetts, 1999
  • 6Allan J, Papka R, Lavrenko V. On-line new event detection and tracking // Proceedings of International ACM Conference on Research and Development in Information Retrieval: SIGIR-98. Melbourne, 1998 : 37-45
  • 7Allan J, Lavrenko V, Jin H. First story detection in TDT is hard// Proceedings of the 2000 ACM CIKM International Conference on Information and Knowledge Management. Mclean: ACM Press, 2000:374-381
  • 8李保利,俞士汶.话题识别与跟踪研究[J].计算机工程与应用,2003,39(17):7-10. 被引量:61
  • 9Luo G, Tang C, Yu P. Resource-adaptive real-time new event detection // Proceedings of the 2007 ACM SIGMOD international conference on Management of data. Beijing, 2007 : 497-508
  • 10俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:157

二级参考文献30

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2[1]National Institute of Standards and Technology. The 2002topic detection and tracking (TDT2002) task definition and evaluation plan,version 1.1 [ EB/OL]. http://www.nist. gov/speech/tests/tdt, 2002 -05 - 13.
  • 3[2]Allan J,Carbonell J,Doddington G,et al. Topic detection and tracking pilot study: final report [A]. In Proceedings of DARPA Broadcast News Transcription and Understanding Workshop [C]. Virginia: Lansdowne Conference Resort Lansdowne, 1998. 194 - 218.
  • 4[3]Yang Y,Pierce T,Carbonell J. A study on retrospective and on-line event detection [A]. In the Proceedings of ACM SIGIR 1998 [C]. Melbourne: Association for Computing Machinery Press, 1998.28 - 36.
  • 5[4]Yang Y,Carbonell J,Brown R,et al. Learning approaches for detecting and tracking news events [J]. IEEE Intelligent Systems: Special Issue on Applications of Intelligent Information Retrieval, 1999,14 (4) :32 - 43.
  • 6[5]Hatch P,Stokes N,Carthy J. Topic detection, a new application for lexical chaining? [A]. British Computer Society IRSG 2000 [C]. Cambridge:British Computer Society ,2000.94 - 103.
  • 7[6]Papka R. On-line new event detection,clustering and tracking[D]. Amherst: Department of Computer Science, University of Massachusetts Amherst,1999.
  • 8[7]Allan J,Papka R,Lavrenko V. On-line new event detection and tracking [A]. In the Proceedings of ACM SIGIR 1998 [C]. Melbourne:Association for Computing Machinery Press, 1998.37 - 45.
  • 9[8]Dharanipragada S, Franz M, McCarley J S, et al. Story segmentation and topic detection in the broadcast news domain [A]. In Proceedings of the DARPA Broadcast News Workshop [C]. Herndon: National Institute of Standar and Technology,1999.
  • 10[9]Yamron J. P,Knecht S,van Mulbregt P. Dragon′s tracking and detection systems for the TDT2000 evaluation [A]. In Proceedings of Topic Detection and Tracking Workshop [C]. U S A :National Institute of Standar and Technology ,2000.75 - 80.

共引文献221

同被引文献75

  • 1无.关于深入推进医养结合发展的若干意见[J].中华人民共和国国家卫生健康委员会公报,2019(10):14-18. 被引量:9
  • 2俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:157
  • 3Wikipedia.Cloudcomputing[EB/OL].(2007-03-03)[2010-03-28].http://en.wikipedia.org/wiki/Cloud_computing.
  • 4CALISHAIN T,DORNFEST R.Google hacks:100 industrial-strength tips & tools[M].New York:O’OReilly,2003.
  • 5KAUTZ H,SELMAN B,SHAH M.The hidden Web[J].AI Magazine,1997,18(2):27-35.
  • 6MIKA P.Flink:semantic Web technology for the extraction and analysis of social network[J].Journal of Web Semantics,2005,3(2):211-223.
  • 7BEKKERMAN R,McCALLUM A.Disambiguating Web appearances of people in a social network[C]//Proc of the 14th International Conference on World Wide Web.New York:ACM Press,2005:463-470.
  • 8KNEES P,PAMPALK E,WIDMER G.Artist classification with Web-based data[C]//Proc of the 5th International Symposium on Music Information Retrieval.2004:517-524.
  • 9LIN Chen,YANG Jiang-ming,CAI Rui,et al.Modeling semantics and structure of discussion threads[C]//Proc of the 18th International Conference on World Wide Web.New York:ACM Press,2009:1103-1104.
  • 10RAGHU R,JOHANNES G.Database management systems[M].3rd ed.New York:McGraw-Hill,2002.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部