期刊文献+

发散孔纵向波纹隔热屏气膜冷却特性研究 被引量:4

Numerical simulation on air film cooling characters of the longitudinal ripple heat shield with effusion holes
下载PDF
导出
摘要 对燃烧室内开有发散孔的纵向波纹隔热屏进行了数值模拟。研究隔热屏的四种结构参数开孔率、波纹板高度、气膜孔直径和冷却通道高度的改变对隔热屏冷却效果的影响。研究表明:在气膜孔出流总量相同的情况下,3%开孔率比6%开孔率的隔热屏平均冷却效率较高;汉纹板高度对隔热屏冷却效果影响较大,波纹板无量纲高度B=1%时的隔热屏平均冷却效率最高;冷却通道高度和气膜孔直径对隔热屏冷却效果影响较小,冷却通道高度只影响隔热屏前段的冷却效率,发散孔气膜孔直径的大小则对隔热屏冷却效率几乎没有影响。 This paper presents numerical simulation of effusion holes on the longitudinal wavy liner in the eombustor. The investigation focused on the parameters affecting cooling effectiveness, which are opening ratio, height of ripple board, diameter of cooling holes and height of cooling passage. The results have showed that the heat shield gets a higher average cooling effectiveness when the opening ratio a = 3 % compared with a = 6 %, on the condition of the same total flow effusing from holes. Cooling efficiency is sensitive to the height of ripple board, the heat shield gets the highest cooling effectiveness when the dimensionless height of ripple board B = 1% compared with B = 2 % and B = 3.33 %. Chang- ing the height of cooling passage and the diameter of cooling holes have a little influence on the cooling effectiveness. Changing the height of cooling passage only influences the front of the wavy liner, and the size of the diameter nearly docsn' t influence the cooling efficiency of the liner.
作者 唐婵 常海萍
出处 《燃气轮机技术》 2009年第1期37-41,60,共6页 Gas Turbine Technology
关键词 波纹隔热屏 冷却效率 气膜冷却 数值模拟 发散气膜孔 wavy liner cooling effcetiveness fdm cooling numerical simulation effusion hole
  • 相关文献

参考文献6

  • 1陆永华,常海萍,谈浩元.纵向波纹隔热屏通道的换热特性[J].推进技术,2002,23(3):230-232. 被引量:15
  • 2唐婵,常海萍,毛军逵.离散孔纵向波纹隔热屏气膜冷却特性研究[J].工程热物理学报,2007,28(3):487-489. 被引量:12
  • 3J. C. Bailey, J. Intile, T. F. Fric, A. K. TolpaDi, N. V. Nirmalan, R. S. Bunker. Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner[ J]. Transactions of the ASME. 2003, 125 : 994 - 100 2.
  • 4K. ShinBo, Y. KoiDe, T. Kashiwagi, M. Oguma, M. Mizuno. Research of Heat Transfer of a Liner for an Afterburner[ C ]. 33rDAIAA/ASME/SAE/ ASEE. Joint Propulsion Conferenc & Exhibit, 1997.
  • 5S. Jayant, G. F. Hewitt Hydrodynamics and Heat Transfer of Wavy Thin Film Flow[ J]. Heat Transfer, 1997,40(1) : 179 - 190.
  • 6The CFX Approch to Turbulence Modeling Accurate and Effective Tubulent Flow Simulations. CFX Technical Brief.2003.

二级参考文献2

共引文献21

同被引文献27

  • 1任加万,谭永华.冲压发动机燃烧室热防护技术[J].火箭推进,2006,32(4):38-42. 被引量:24
  • 2唐婵,常海萍,毛军逵.离散孔纵向波纹隔热屏气膜冷却特性研究[J].工程热物理学报,2007,28(3):487-489. 被引量:12
  • 3Champion J L, Deshaies B, Curtelin R, et al. Aerodynamical structure of the wall flow over a wavy surface partially cooled by air injection through multiperforations [ R]. AIAA 99-1016,1999.
  • 4Jeffery A L,Torence P B,Derk S P. Development needs for advanced afterburner designs[R]. AIAA 2004 4192,2004.
  • 5Jobin T R,Gamble E J, Bachmann J G. Development of a computer program for thermal analysis of aircraft cooling liners[R]. AIAA 2006 986,2006.
  • 6Thornton E A. Coupled flow thermal and structural analy- sis of aerodynamically heat panels[J]. Journal of Aircraft, 1988,25(11) :1052 -1059.
  • 7Barozzi G S,Pagliarini G. A method to solve conjugate heat transfer problems zthe case of fully developed laminar flow in a pipe[J]. Journal of Heat Transfer, 1985( 107): 77- 83.
  • 8Funazaki K, Hachiya K. Systematic numerical studies on heat transfer and aerodynamic characteristics of impinge ment cooling devices combined with pins[R]. ASME Paper GT2003-38256.2003.
  • 9Rao G A,Kitron-Belinkov M, Yeshayahou l.. Numerical a- nalysis of a multiple jet impingement system[R]. ASME Paper GT2009-59719,2009.
  • 10王开,徐国强,孙纪宁,陶智,吴宏伟.直径比对冲击气膜组合冷却流动与换热的影响[J].航空学报,2008,29(4):823-828. 被引量:6

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部