摘要
按[1]的观点,我们把量子群看成广义的仿射群概形。若R∈Ob(AlgK),则集合GLn,q(R)由满足如下两个条件的矩阵α=(αij)n×n∈Mn(R)组成(这里Mn(R)是R上所有n×n矩阵的集合):(1)αij满足一组众所周知的关系式(参看(1.1));(2)Dq(α)在R中可逆,这里Dq为量子行列式(参看(1.2))。本文证明了条件(2)等价于如下条件:(3)α在Mn(R)中可逆。Cartier在论文[3]中用条件(1)和(3)来定义集合GLn,q(R)。因此,本文的结果保证了前面定义的GLn,q(R)与Cartier[3]所定义的GLn,q(R)是一致的。
Following [1], we regard a quantum group as a generalized affine group scheme.For R ∈Ob (AlgK), GLn. q(R ) consists of the matrics a = (aij )n ×n ∈ Mn (R ) (the set of n × n - matrices with entries in R ) with the following two properties: (1) aij s satisfy the wen - known defining reations (see (1. 1 ) );(2) Dq(a ) is invertible in R, Dq being the quantum determinant (see (1. 2)). In this paper we proved that conditha (2) is equlvalent to the following condition;(3) a is invertible in Mn(R ).Note that conditiona (1) and (3) are used by Cartier[3] to define the set GLn, q (R ). Thus,our result ensures that the above definition of GLn,q (R ) coincides with the definition given by Carties[3].
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第1期1-6,共6页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金!19236013,19421002
关键词
仿射群概形
量子线性群
量子行列式
几何点
affine group scheme quantum linear group quantum determinant geometric points