期刊文献+

冷拔高碳钢丝织构演变分析 被引量:6

Microtexture evolution of cold drawing high carbon steel wire
下载PDF
导出
摘要 利用电子背散射衍射分析(EBSD)方法对高碳钢丝拉拔及再结晶过程织构的演变过程及织构分布进行了研究.研究发现随钢丝应变量的增加,钢丝中除了典型的〈110〉丝织构外,还存在比较明显的〈112〉织构,并且随着应变量的增加〈110〉织构的强度逐渐增加;同时,在ε=1.9时,钢丝表层〈110〉强度及所占比例大于中心部分,而〈112〉织构强度弱于中心部分;在经过600℃退火再结晶后钢丝中产生的再结晶织构与形变织构相同,仍然为〈110〉和〈112〉织构,并且随退火时间延长,织构强度不断变弱. Texture exerts a significant influence on the mechanical properties of the steel wire,while the investigation of texture in the high carbon steel wire is not enough at home,so the development of texture and the difference between core and periphery during drawing of industrial high carbon steel wire has been studied by electron backscatter diffraction(EBSD) in the scanning electron microscope.It is shown that apart from the formation of an axial 〈110〉component,the steel textures also contain a significant 〈112〉component at different degrees of deformation.At the same time,the texture of steel wire(ε=1.9) was studied from periphery to core.It is found that the intensity and volume fraction of 〈110〉component in the periphery is higher than that in the core,while the 〈112〉component is lower.On the other hand,it is found that the recrystallization texture is composed of the same components as texture of drawn wires(〈110〉and〈112〉) after annealing at 600℃ and the acuity of the texture decreases with lengthened annealing.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期131-135,共5页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2007CB616903) 新世纪优秀人才支持计划资助项目(NCET-04-11471)
关键词 EBSD 织构 再结晶 演变 EBSD(electron backscatter diffraction) texture recrystallization evolution
  • 相关文献

参考文献2

二级参考文献26

  • 1Adachi Y, Seki A. Diffusion Induced Recrystallization in Fe(Zn) System Characterized by EBSD[J]. Journal of the Japan Institute of Metals, 1998, 62(8):754-760.
  • 2Seung-Hyun H, Dong-Nyung L, Recrystallization Textures in Cold-Rolled Ti Bearing IF Steel Sheets[J]. ISIJ International,2002,42 (11): 872-877.
  • 3Matsumoto K, Shibayanagi T, Umakoshi Y. Effect of Grain Size on Grain Orientations and Grain Boundary Character Distribution in Recrystallized Al-0.3mass% Mg Alloy[J]. Scripta Metall,1995,33(8): 1321-1326.
  • 4Shimada M , Kokawa H, Wang Z J, et al. Optimization of Grain Boundary Character Distribution for Intergranular Corrosion Resistant 304 Stainless Steel by Win-Induced Grain Boundary Engineering[J].Acta Mater,2002, 50(2):2331-2341.
  • 5Lehockey E M, Palumbo G, Lin P. Grain Boundary Structure Effects on Cold Work Embrittlement of Microalloyed Steels[J]. Scripta Materialia, 1998, 39(3): 353-358.
  • 6Brochu M, Yokota T,Satoh S. Analysis of Grain Colonies in Type 430 Ferritic Stainless Steels by Electron Back Scattering Diffraction (EBSD)[J]. ISIJ International,1997, 37 (9): 872-877.
  • 7GOTO S, YAMASHITA S, MIMURA T, YOSHINAGA H. Yield strength of AI-CuAl2 lamellar-eutectic composites at high temperatures [J]. Trans JIM, 1986, 27(7): 512-523.
  • 8TASHIRO H. Piano wire of the highest tensile strength steel [J]. Materia Japan, 1996, 35( 11 ): 1177-1181.
  • 9TAKAHASHI T, OCHIAI I, SATOH H. Development of ultra-high strength steel wire [J]. Shinnittetsu Giho, 1992, 343:86-90. (in Japanese)
  • 10OCHIAI I, NISHIDA S, TASHIRO H. Effects of metallurgical factors on strengthening of steel tire coed [J]. Wire J, 1993, 26: 50.

共引文献23

同被引文献53

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部