期刊文献+

寿命服从极值分布的可修系统稳态可用度的置信限 被引量:1

Confidence limit of steady state availability of the system with minimum operating time
下载PDF
导出
摘要 讨论了寿命服从极值分布,修理时间服从对数正态分布情况下,可修系统稳态可用度的广义置信下限.特别是针对极值分布的方差未知的情况,用分组求解法获得了广义p值统计量. Generalized lower confidence limit of steady state availability of the repairable system was studied, which was under Minimum operating time and lognormal repair time. When the variance of minimum distribution is unknown, the generalized p-value statistics is obtained by the grouping method.
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2009年第2期140-143,共4页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(批准号10771192)
关键词 极值分布 对数正态分布 稳态可用度 广义置信限 minimum distribution lognormal distribution steady state availability generalized confidence limit
  • 相关文献

参考文献12

  • 1GRAY H L, SCHUCANY W R. Lower confidence limits for availability assuming lognormally distributed repair times [J ]. IEEE Transactions on Reliability, 1969,18:157-162.
  • 2MARTZ H F, WALLER R A. Bayesian Reliability Analysis[M]. New York: John Wiley,1982.
  • 3THOMPSON M. Lower confidence limits and a test of hypotheses for system availability[J]. IEEE Transactions on Reliability, 1966,15 : 32-36.
  • 4GRAY H L, LEWIS T O. A confidence interval for the availability ratio[J]. Technometrics, 1967,9:465-471.
  • 5MASTERS B N, LEWIS T O. A note on the confidence interval for the availability ratio[J]. Microelectronics and Reliability, 1987,27(3) : 487-492.
  • 6MASTERS B N, LEWIS T O, KOLARIK W J. A confidence interval for the availability ratio for systems with weibull operating time and lognormal repair time[J]. Microelectronics and Reliability, 1992,32 ( 1 ) : 89- 99.
  • 7CHANDRASEKHAR P, NATARAJAN R, SUJATHA H S. Confidence limits for steady state availability of systems[J]. Microeleetronics and Reliability, 1997,34 (8) :631-646.
  • 8TSUI K, WEERAHANDI S. Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters[J]. J of the American Statistical Association, 1989,84 : 602-607.
  • 9WEERAHANDI S. Generalized confidence intervals [J]. J of the American Statistical Association, 1993, 88:899-905.
  • 10ANANDA M M A. Confidence intervals for steady state availability of a system with exponential operating time and lognormal repair time [J]. Applied Mathematics and Computation, 2003,137 : 499-509.

二级参考文献7

  • 1张帼奋,姜红燕.非参数可修系统可用度的评定[J].浙江大学学报(理学版),2005,32(4):377-381. 被引量:7
  • 2ROBBINS H.The empirical Bayes approach to statistical decision problems[J].Annals of Mathematical Statistics,1964,35 (1):1-20.
  • 3SARHAN A.Empirical Bayes estimates in exponential reliability model[J].Applied Mathematics and Computer,2003,135(2):319-332.
  • 4GRABSKI F,SARHAN A.Emipirical Bayes estimation in the case of exponential reliability[J].Reliability Engineering and System Safety,1996,53(2):105-113.
  • 5SARHAN A.Non-parametric empirical Bayes procedure[J].Reliability Engineering and System Safety,2003,80(1):115-122.
  • 6LAHIRI P,PARK D H.Non-parametric Bayes and empirical Bayes estimators of mean residual life at age t[J].J Stat Plan Inference,1991,29(2):125-136.
  • 7吴喜之.现代贝叶斯统计学[M].北京:中国统计出版社,2000.

共引文献3

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部