期刊文献+

等温滴定量热法测定脲酶催化尿素水解反应动力学 被引量:11

Kinetics of urease-catalyzed hydrolysis reaction of urea determined by isothermal titration calorimetry
下载PDF
导出
摘要 采用等温滴定量热法研究脲酶催化尿素的水解反应(尿素浓度147mmol·L-1,脲酶浓度3.0×10-7mmol·L-1,pH=7.0磷酸缓冲溶液)动力学,测定了该反应在298.15~318.15K温度范围内的反应速率常数kcat和米氏常数Km等动力学参数.结果表明:在实验条件下,脲酶催化尿素的水解反应符合Michaelis-Menten机理;温度对kcat的影响遵循阿累尼乌斯方程,表观活化能为16.6kJ·mol-1;等温滴定量热法可有效地用于酶催化反应动力学参数的测定,是具有应用前景的研究酶活性的方法. Isothermal titration calorimetry (ITC) was used to observe the enzyme-catalyzed hydrolysis reaction of urea. Two kinetic parameters, the enzymatic conversion rate constant, kcat, and the Maichaelis constant, Km, for the urea (147 mmol · L^-1) / urease (3.0)〈 10 7 mmol· L^-1) enzymatic system in sodium phosphate buffer at pH 7.0 at T=(298.15 to 318.15)K were determined from the isothermal titration calorimetry experimental data. The results indicated that the urease-catalyzed reaction approximated well to the Michaelis-Menten equation under the experimental conditions. The effect of the temperature on the variation of the values of kcat can be correlated quantitatively to the Arrhenius equation with the apparent activation energy of 16.6 kJ ·mol^-1. The results showed a good example of effectively evaluating kinetic parameters for enzyme-catalyzed reaction by ITC. It is suggested that ITC should he suitable and have significant potential for the kinetic study of enzyme activity.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2009年第2期175-179,共5页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(20673098) 浙江省自然科学基金资助项目(M203090)
关键词 等温滴定量热 酶催化反应 脲酶 动力学参数 isothermal titration calorimetry(ITC) enzyme-catalyzed reaction urease kinetic parameter
  • 相关文献

参考文献18

  • 1DZINGELESKI G D, WOLFENDEN R. Hypersensitivity of an enzyme reaction to solvent water[J]. Biochemistry, 1993,32 : 9143-9147
  • 2ELLIS R J. Macromolecular crowding: obvious but underappreciated[J]. Trends Biochem Sci,2001,26 : 597-604.
  • 3RAND R P, FULLER N L, BUTKO P, et al. Measured change in protein solvation with substrate binding and turnover[J]. Biochemistry, 1993,32 : 5925-5929.
  • 4BEEZER A E, STEENSON T I, TYRRELL H J V. Application of flow microcalorimetry to analytical problems. II. urea-urease system[J]. Talanta, 1974, 21:467-474.
  • 5BIANCONI M L. Calorimetry of enzyme catalyzed reactions[J]. Biophysical Chemistry, 2007,126 : 59-64.
  • 6KARIM N, OKADA H, KIDOKORO S. Calorimetric evaluation of the activity and the mechanism of cellulases for the hydrolysis of cello-ologosaccharides accompanied by the mutarotation reaction of the hydrolyied products[J]. Thermochim Acta,2005,431:9-20.
  • 7MORIN P E, FREIRE E. Direct calorimetric analysis of the enzymatic activity of yeast cytochrome-c-oxidase [J]. Biochemistry, 1991,30 : 8494-8500.
  • 8OLSEN S N. Application of isothermal titration calorimetry to measure enzyme kinetics and activity in complex solutions [J]. Thermochim Acta, 2006, 448:12-18.
  • 9O'NEILL M A A, BEEZER A E, MITCHELL J C, et al. Determination of michaelis-menten parameters obtained from isothermal flow calorimetric data [J]. Thermochim Acta,2004,417: 187-192.
  • 10WATT G D. A Microealorimetric procedure for evaluating the kinetic parameters of enzyme-catalyzed reactions: kinetic measurements of the nitrogenase system[J]. Anal Biochem, 1990,187 :141-146.

同被引文献153

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部