摘要
从考虑向量值函数的每一个分量出发,将Beltrami方程组转化为一类散度型椭圆组;从而来建立Beltrami方程组很弱解的正则性:存在可积指数r1和r2,1<r1<n<r2<∞,使得方程组在低于自然可积指数Sobolev空间W1,r1loc(Ω,Rn)中的很弱解,都属于空间W1,r2loc(Ω,Rn)。
By considering each component of vector functions,we transform Beltrami system to a class of elliptic systems of divergence type.Then we establish the regularity of very weak solutions of Beltrami system:there exist integrable exponents r 1 and r 2 (1<r 1<n<r 2<∞) such that every very weak solution f∈W 1,r 1 loc (Ω,R n)of Beltrami system belongs to W 1,r 2 loc (Ω,R n).So f is still a classical weak solution of Beltrami system.
出处
《北方交通大学学报》
CSCD
北大核心
1998年第2期12-18,共7页
Journal of Northern Jiaotong University
关键词
弱K拟正则映射
BELTRAMI方程组
很弱解
weak K quasiregular mappings Beltrami system Hodge decomposition of vector fields reverse Hlder inequality very weak solutions