期刊文献+

廉价模板法制备介孔MnO_2的电化学电容性质 被引量:2

Electrochemical capability of mesoporous manganese dioxide prepared by cheap template method
下载PDF
导出
摘要 以国产嵌段共聚物P123为模板剂制备了介孔氧化硅模板KIT-6,利用"反相复制法"制备出具有介孔结构的二氧化锰电极材料。BET测试结果表明,所制备KIT-6和二氧化锰的BET比表面积分别为821.7m2/g和137m2/g,孔径分布分别集中在2.67nm和3.67nm,其孔容分别为0.52cm3/g和0.39cm3/g。循环伏安,交流阻抗以及恒电流充放电测试表明用所制介孔二氧化锰制备的电极有很好的电化学电容性能,首次放电容量可达295F/g,远高于直接分解Mn(NO3)2所制得的MnO2,并且其复平面图表现出典型的电容特征。因此,采用该法制备的这种介孔结构的MnO2能够用来制作电化学电容器电极,并且保持较高的比电容量和良好的电容性能。 Mesoporous SiO2 template KIT-6 was synthesized using cheap domestic P123 as template agent, and the mesoporous MnO2 was prepared by "inverse phase duplicate method". The testing results showed that the BET specific surface area of as-prepared template and mesoporous MnO2 reached 821.7 m^2 and 137 m^2/g respectively. Their aperture distributions concentrated on 2.67 nm and 3.67 nm, and the pore volumes were 0.52 cm^3/g and 0.39 cm^3/g respectively. Good electrochemical capability of the asprepared mesoporous MnO2 was testified by cyclic voltammetry, electrochemical impedance spectra, as well as constant current charge/discharge experiment. It was found that the first specific discharge capacity reached 295 F/g, much higher than that of the MnO2 prepared by decomposing Mn (NO3)2 directly. Moreover, it showed typical capacity characterization in Nyquist plots. As a result, such prepared mesoporous MnO2 could be used to fabricate the supercapacitor electrode and maintain high specific capacitance and good capacitive behavior.
出处 《电池工业》 CAS 2009年第1期26-30,37,共6页 Chinese Battery Industry
关键词 二氧化锰(MnO2) 介孔 超级电容器 准电容 manganese oxide mesopore supercapacitor pseudocapacitance
  • 相关文献

参考文献12

  • 1Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization [J]. Journal of Power Sources, 2002, 112(1): 236-246.
  • 2Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors [J]. J ournal of Power Sources, 1997, 66(1-2): 1-14.
  • 3Pell W G, Conway B E, Adams W A, Oliveira J. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications [J]. Journal of Power Sources, 1999, 80(1-2): 134-141.
  • 4Conway B E. Electrochemical supercapaeitors [M]. New York, Kluwer Academic/Plenum Publishers, 1999.
  • 5Zhao D, Feng J, Huo Q, et al. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279 (5350): 548-552.
  • 6Yang C M, Sheu H S, Chao K J, Templated synthesis and structural study of densely packed metal nanostuctures in MCM-41 and MCM--48 [J]. Advanced Functional Materials. 2001, 12: 143-148.
  • 7Tian B Z, Liu X Y, Yang H F, et al. C-eneral synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J]. Advanced Materials, 2003, 15 (16): 1370-1374.
  • 8Jiao F, Bruce P G. Mesoporous crystalline β-MnO2: a reversible positive electrode for rechargeable lithium batteries [J]. Advanced Materials Mate, 2007, 19: 657-660.
  • 9Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chem Commun, 2003, 2136-2137
  • 10张莹,刘开宇,张伟,王洪恩.二氧化锰超级电容器的电极电化学性质[J].化学学报,2008,66(8):909-913. 被引量:27

二级参考文献35

共引文献44

同被引文献24

  • 1Haring H E, Taylor R I. USP 3,166.693,1965.
  • 2Lee H Y and Goodenough J. Supercapacitoz behavior with KCI electrolyte [J]. Solid State Chem, 1999, 144: 220-223.
  • 3Devaraj S and Munichandrainah. The effect of nonionic surfactant Triton X-100 during eleochemica deposition of Mn02 on its capacitance properties [J]. J Electrochem Soc, 2007, 154(10): A901-A909.
  • 4Brousse T, Toupin M, Dugas R, et al. Crystalline MnO2 as possibleal ternatives to amorphous compounds in eletrochemical pecapaatos [J]. J Electrochem Soc, 2006, 153 (12): A2171-A2180.
  • 5Devaraj S, Munichandraisch. Electrochemical super capacitor studies of nano structured -MnOz synthesized by microemulsion method and the effect of annealing [J]. J Electrochem Soe, 2007, 154(z): AS0-A88.
  • 6Luo J Y, Xia Y Y. Effect of pore structure on the electro- chemical capacitive performance of MnO2 [J]. J Electrochem Soc, 2007, 154(11): A987-A992.
  • 7Fischer A E, Saunders M P, Pettigren K A, et al. Eleetroless deposition on uhraporous carbon nanoarehiteetuzes: eorrelatlon of evolving poe-solid structure and electro- chemical performanee [J]. J Eleetroehem Soe, 2008, 155(3): A246-A252.
  • 8Jeong Y U, Man Thiram. NanocrystaUine manganese oxides for electro-chemical capacitors with neural electrotytes [J]. J Eletrochem Soc, 2002, 149(11): A1419-A1422.
  • 9Subramanian V, Zhu H W, Robert V, et al. Hydrothermal synthesis and pseudo capacitance properties of MnO2 nanostructures [J]. J Phys Chem B, 2005, 109: 20207-20214.
  • 10Ragupathy P, Vasari H N, Muniehandraiseh. Synthesis and characterization of nano-MnO2 for electrochemical super- capacitor studies[J]. J Eletrochem Soc, 2008, 151(1): A34- A40.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部