期刊文献+

Conformal invariance and Hojman conserved quantities of canonical Hamilton systems

Conformal invariance and Hojman conserved quantities of canonical Hamilton systems
下载PDF
导出
摘要 This paper discusses the conformal invariance by infinitesimal transformations of canonical Hamilton systems. The necessary and sufficient conditions of conformal invarianee being Lie symmetrical simultaneously by the action of infinitesimal transformations are given. The determining equations of the conformal invariance are gained. Then the Hojman conserved quantities of conformal invariance by special infinitesimal transformations are obtained. Finally an illustrative example is given to verify the results. This paper discusses the conformal invariance by infinitesimal transformations of canonical Hamilton systems. The necessary and sufficient conditions of conformal invarianee being Lie symmetrical simultaneously by the action of infinitesimal transformations are given. The determining equations of the conformal invariance are gained. Then the Hojman conserved quantities of conformal invariance by special infinitesimal transformations are obtained. Finally an illustrative example is given to verify the results.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期856-860,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos 10472040,10572021 and 10772025) the Outstanding Young Talents Training Found of Liaoning Province of China (Grant No 3040005)
关键词 canonical Hamilton systems infinitesimal transformations conformal invariance Hoj man conserved quantities canonical Hamilton systems, infinitesimal transformations, conformal invariance, Hoj man conserved quantities
  • 相关文献

参考文献28

  • 1Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
  • 2Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Springer)
  • 3Li Z P 1993 Classical and Quantum Dynamical Constraint Systems and Their Symmetric Properties (Beijing: Beijing Polytechnic University Press) (in Chinese)
  • 4Noether A E 1918 Nachr. Akad. Wiss. Gottingen. Math. Phys. KI II 235
  • 5Mei F X 2000 Appl. Mech. Rev. 53 283
  • 6Guo Y X, Luo S K and Mei F X 2004 Adv. Mech. 34 477 ( in Chinese)
  • 7Li Y C, Wang J, Xia L L, Hou Q B and Jing H X 2007 Chin. Phys. 16 2841
  • 8Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
  • 9Guo Y X, Wang Y, Chee G Y and Mei F X 2005 J. Math. Phys. 46 062902
  • 10Guo Y X, Liu S X, Liu C, Luo S K and Wang Y 2007 J. Math. Phys. 48 082901

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部