摘要
Spatiotemporal multiple coherence resonances coupled hepatocytes are studied. It is shown that for calcium activities induced by weak Gaussian white noise in bi-resonances in hepatocytes are induced by the interplay and competition between noise and coupling of cells, in other words, the cell in network can be excited either by noise or by its neighbour via gap junction which can transfer calcium ions between cells. Furthermore, the intercellular annular calcium waves induced by noise are observed, in which the wave length decreases with noise intensity augmenting but increases monotonically with coupling strength increasing. And for a fixed noise level, there is an optimal coupling strength that makes the coherence resonance reach maximum.
Spatiotemporal multiple coherence resonances coupled hepatocytes are studied. It is shown that for calcium activities induced by weak Gaussian white noise in bi-resonances in hepatocytes are induced by the interplay and competition between noise and coupling of cells, in other words, the cell in network can be excited either by noise or by its neighbour via gap junction which can transfer calcium ions between cells. Furthermore, the intercellular annular calcium waves induced by noise are observed, in which the wave length decreases with noise intensity augmenting but increases monotonically with coupling strength increasing. And for a fixed noise level, there is an optimal coupling strength that makes the coherence resonance reach maximum.
基金
supported by the National Natural Science Foundation of China (Grant Nos 10432010 and 10872014)