期刊文献+

DIRECT MINIMIZATION FOR CALCULATING INVARIANT SUBSPACES IN DENSITY FUNCTIONAL COMPUTATIONS OF THE ELECTRONIC STRUCTURE

DIRECT MINIMIZATION FOR CALCULATING INVARIANT SUBSPACES IN DENSITY FUNCTIONAL COMPUTATIONS OF THE ELECTRONIC STRUCTURE
原文传递
导出
摘要 In this article, we analyse three related preconditioned steepest descent algorithms, which are partially popular in Hartree-Fock and Kohn-Sham theory as well as invariant subspace computations, from the viewpoint of minimization of the corresponding functionals, constrained by orthogonality conditions. We exploit the geometry of the admissible manifold, i.e., the invariance with respect to unitary transformations, to reformulate the problem on the Grassmann manifold as the admissible set. We then prove asymptotical linear convergence of the algorithms under the condition that the Hessian of the corresponding Lagrangian is elliptic on the tangent space of the Grassmann manifold at the minimizer. In this article, we analyse three related preconditioned steepest descent algorithms, which are partially popular in Hartree-Fock and Kohn-Sham theory as well as invariant subspace computations, from the viewpoint of minimization of the corresponding functionals, constrained by orthogonality conditions. We exploit the geometry of the admissible manifold, i.e., the invariance with respect to unitary transformations, to reformulate the problem on the Grassmann manifold as the admissible set. We then prove asymptotical linear convergence of the algorithms under the condition that the Hessian of the corresponding Lagrangian is elliptic on the tangent space of the Grassmann manifold at the minimizer.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2009年第2期360-387,共28页 计算数学(英文)
基金 supported by the DFG SPP 1445:"Modern and universal first-principles methods for many-electron systems in chemistry and physics" and the EU NEST project BigDFT.
关键词 Eigenvalue computation Grassmann manifolds OPTIMIZATION Orthogonalityconstraints Hartree-Fock theory Density functional theory PINVIT Eigenvalue computation, Grassmann manifolds, Optimization, Orthogonalityconstraints, Hartree-Fock theory, Density functional theory, PINVIT
  • 相关文献

参考文献46

  • 1P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2007.
  • 2D. C. Allen, T. A. Arias, J. D. Joannopoulos, M. C. Payne, M. P. Teter, Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64:4 (1992), 1045-109.
  • 3T. A. Arias, Multiresolution analysis of electronic structure: semicardinat and wavelet bases, Rev. Mod. Phys., 71 (1999), 267-311.
  • 4T. A. Arias, A. Edelman, S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. A., 20:2 (1999), 303-353.
  • 5L. Armijo, Minimization of lunctions having Lipschitz continuous first partial derivatives, Pac. J. Math., 16 (1966), 1-3.
  • 6M. Barrault, E. Canees, W. W. Hager, C. Le Bris, Multilevel domain decomposition for electronic structure calculations, J. Comput. Phys., 222:1 (2007), 86-109.
  • 7T. L. Beck, Real-space mesh techniques in density-functional theory, Rev. Mod. Phys., 72 (2000), 1041-1080.
  • 8J. H. Bramble, J. E. Pasciak, A.V. Knyazev, A subspace preconditioning algorithm for eigenvector/eigenvalue computation, Adv. Comput. Math., 6 (1999), 159-189.
  • 9E. Cances, M. Defranceschi, W. Kutzelnigg, C. Le Bris, Y. Maday, Computational Quantum Chemistry: A Primer, Handbook of Numerical Analysis, Volume Ⅹ, Elsevier Science, 2003.
  • 10E. Cances, C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN, 34 (2000), 749-774.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部