期刊文献+

用学习和搜索方法从神经元网络中抽取知识

Using two phase approach to extract knowledge from artificial neural networks
原文传递
导出
摘要 针对训练好的神经元网络进行解释这一难以解决的问题,提出了一种从神经元网络中抽取规则的新的抽取方法——二阶段法,从隐含层到输出层,利用学习方法从整个隐含激励空间中抽取出有效区域,形成规则;从输入层到隐含层,利用搜索方法,通过分析其间的权值关系抽取出规则,使得所有被这些规则覆盖的实例所产生的隐含激励向量均位于上述有效区域内。实验证明了此方法产生的规则比C4.5产生的规则的抗干扰力强,同时其可信度比传统的基于搜索的抽取方法——KT算法要高。 According to the understanding problem of artificial neural networks, this paper prvide a new method of extracting rules from trained heural network——two phases algorithm. From hidden layer to output layer, it extracts rules by identifying valid regions in the whole hidden activation space. From input layer to hidden layer, it searches the rules based on the analysis of weights between input nodes and hidden nodes so that all instances covered by these rules generate hidden activation vectors lying in the valid regions. Some experiments have demonstrated that our method generates rules of better performance than the decision tree approach in noisy conditions and the fidelity of the rules extracted from a neural network with distributed representations in our method is higher than that in conventional search based methods, such as KT algorithms.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 1998年第3期96-99,共4页 Journal of Tsinghua University(Science and Technology)
基金 国防科技预研基金
关键词 神经元网络 规则提取 机器学习 neural network rule extraction machine learning 
  • 相关文献

参考文献1

  • 1Fu Limin,IEEE Trans Syst Man Cybern,1994年,24卷,8期,1114页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部