期刊文献+

远期生效亚式期权定价的蒙特卡罗模拟法 被引量:4

A Monte Carlo Simulation Method for Pricing the Forward-Starting Asian Option with Floating Strike Price
原文传递
导出
摘要 由于亚式期权是以合约签定日至到期日这段时期的标的资产平均价为合约执行价,容易增加投资者的风险和成本.为了减低投资风险,研究了一类以合约生效日后某一时点起至到期日之间标的资产平均价作为执行价的远期生效亚式(FFSA)期权的定价.应用随机分析理论方法推导出几何平均的FFSA看涨期权价格的显示解,以此期权价格作为控制变量建立了算术平均的FFSA看涨期权定价的蒙特卡罗模拟算法.通过具体计算实例,分析了模型参数以及时间窗宽等因素对期权价格的影响.结果表明:带控制变量的模拟法在解决亚式期权定价,以及提高计算精度方面有重要作用. Due to the feature of the strike price based on average asset values during some period within the option's lifetime, Asian options may be easy to increase risk investment. In order to reduce the risk investment, pricing forward-starting Asian options with floating-strike price (FFSA), which is based on the underlying asset's average values calculated from some pre- specified time after the first trading date of the contract to maturity, was considered in this paper. Based on stochastic analysis, a closed-form solution for the FFSA call option on geometric average was firstly obtained, and the Monte Carlo simulation algorithm for the FFSA call option on arithmetic average was provided by using the variance reduction technique with the help of the above closed-form solution. We also discuss the effects of both the parameters in our model and the time windows on these options with numerical examples. The results show that the Monte Carlo simulation method with variance reduction technique plays an important role in the field of both pricing the Asian options and improving the accuracy of computation.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2009年第2期290-296,共7页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(40675023) 广西教育厅立项项目(200807LX018)
关键词 远期生效亚式期权 蒙特卡罗模拟 方差减少技术 forward-starting Asian options Monte Carlo simulation variance reduction technique
  • 相关文献

参考文献14

  • 1HULL J. Options, Futures, and other derivatives (Fifth edition)[M]. Prentice Hall: Pearson Education, Inc, 2006:435-437.
  • 2BOYLE P, POTAPCHIK A. Prices and sensitivities of Asian options: a survey [J]. Insurance: Math Economics, 2008(42) : 189-211.
  • 3BOUAZIZ L, BRIYS E, CROUHY M. The pricing of forward-starting Asian options [J]. Journal of Baking and Finance,1994(18) :823-839.
  • 4TSAO C Y, CHANG C C, LIN C G. Analytic approximation formulae for pricing forward-starting Asian options [J]. Journal of Futures Markets, 2003 (23):487-516.
  • 5CHANG C C, TSAO C Y. Efficient and accurate quadratic approximation methods for pricing Asian options[J].TA/AFA/FMA Annual Meeting, Taipei,Taiwan, 2004(1) :11 -23.
  • 6CHANG C C, LIAO T H, TSAO C Y. Pricing and Hedging forward-starting quanto Asian options[EB/OL]. (2004-11-19)[2005-04-15]. http://www. fma. org/Chieago/Papers/Quanto_Option, pdf.
  • 7KEMNA A G Z, VORVA A C F. A pricing method for options based on average asset values[J]. Journal of Baking and Finance, 1990(14) : 113-129.
  • 8HAYKOV J. A better control variate for pricing standard Asian options [J]. Journal of Financial Engineering, 1993(2) : 207-216.
  • 9TURNBULL S, WAKEMAN L M. A quick algorithm for pricing European average options[J]. Journal of Financial and Quantitative Analysis, 1991, 26(3): 377-389.
  • 10BOYLE P P, BROADIE M, GLASSERMAN P. Monte Carlo methods for security pricing[J]. Journal of Economic Dynamics and Control, 1997(21):1267-1321.

二级参考文献37

  • 1Broadie P, Glasserman P. Monte Carlo methods for securities pricing[J]. Journal of Economic Dynamic and Control, 1997, 21:1263-1321.
  • 2Bratley P. A Guide to Simulation[M]. Berlin:Springer, 1983. 438-471.
  • 3Broadie M Detemple. Recent advances in numerical methods for pricing derivative securities[ A ]. Numerical Methods in Finance[M]. Cambridge: Cambridge University Press, 1997. 170-229.
  • 4Boyle P. A Monte Carlo approach[J]. Journal of Financial Economics, 1977, 4: 328-338.
  • 5Owen A. Safe and Effective Importance Sampling[R]. Technique Report, Standford: Standford University Press, 1998. 210-242.
  • 6Veach E, Guiba P. Optimally Combining Sampling Technique for Monte Carlo Rendering[C]. Los Angeles: In SIGGRAPH' 1995 Conference Proceeding, 1995. 172-210.
  • 7Aiworth P, Broadie M, Glasserman P. Monte Carlo and Quasi-Monte Carlo Methods for Scientific Computing[M]. New York:Springer-Verlag, 1997. 211-240.
  • 8Duffle D. Efficient Monte Carlo simulation of security prices[J]. Annals of Applied Probability, 1995, 5: 897-905.
  • 9Glasserman P, Gaussian P. Importance Sampling and Stratification: Computation Issuer[ C]. Proceeding of the 1998 Winter Simulation Conference, New York: IEEE Press, 1998. 685-693.
  • 10Fournie E, Lasry J. Ntnerical Methods in Finance[M]. Cambridge: Cambridge University Press, 1999. 321-370.

共引文献25

同被引文献23

  • 1黄敢基,区诗德,杨善朝.可转换期权及其定价分析[J].广西科学院学报,2007,23(1):26-29. 被引量:1
  • 2Deng Guohe.PRICING EUROPEAN OPTION IN A DOUBLE EXPONENTIAL JUMP-DIFFUSION MODEL WITH TWO MARKET STRUCTURE RISKS AND ITS COMPARISONS[J].Applied Mathematics(A Journal of Chinese Universities),2007,22(2):127-137. 被引量:13
  • 3RUBINSTEIN M.Pay now,choose later[J].RISK,1991,4(2):13-14.
  • 4ZHANG P G.Exotic options:a guide to second generation options[M].Singapore:World Scientific Publishing Co,1998:187-193.
  • 5KRUSE S,NOGEL U.On the pricing of forward starting options in Heston's model on stochastic volatility[J].Finance and Stochastics,2005,9:233-250.
  • 6CHENG Hsi-hsieh.Pricing and hedging of european forward start option under stochastic interest rate[J].Journal of Financial Studies,2002,11 (1):1-22.
  • 7AHLIP R,RUTKOWSKI M.Forward start options under stochastic volatility and stochastic interest rates[J].International Journal of Theoretical and Applied Finance,2009,12 (2):209-225.
  • 8MERTON R C.Option pricing when underlying stock returns are discontinuous[J].Journal of Financial Economics,1976,3:125-144.
  • 9KOU S.A jump-diffusion model for option pricing[J].Management Seienee,2002,48:1086-1101.
  • 10BEYER P,KIENITZ J.Pricing forward start options in models based on (time-changed) levy processes[J].The Icfai University Journal of Derivatives Markets,2009,6 (2):7-23.

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部