摘要
文章研究了具有时滞N-物种互惠反应扩散系统及其相应的常微分系统。利用一般反应扩散系统的上下解方法,得到了解的存在性和平衡态方程正解的全局渐近稳定性的充分条件。这个结果导致了互惠反应扩散系统的持久性,平凡解和所有半平凡解的不稳定性和不存在非一致平衡解。
This paper is concerned with N - species time - delayed Lotka - Volterra cooperative reaction - diffusion systems and their corresponding ordinary differential systems without diffusion. Adopting the method of upper and lower solutions for a more general reaction - diffusion system, the initial and boundary conditions of reaction - diffusion of solutions and glo sys bal tems with time delays are dealt with to obtain the sufficient conditions for the existence asymptotic stability of a positive steady - state solution. The result leads to the permanence of the cooperative systems, the instability of the trivial and all forms of semitrivial solutions, and the nonexistence of nonuniform steady- state solutions
出处
《云南师范大学学报(自然科学版)》
2009年第2期13-17,共5页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
国家自然科学基金(10571115)
陕西省自然科学基础研究资助项目(2007A11)
关键词
互惠模型
反应扩散系统
时滞
常微分系统
全局渐进稳定性
cooperative model
reaction - diffusion
time delay
global asymptotic stability
ordinary differential systems