期刊文献+

N种群的互惠模型的全局渐近稳定性 被引量:1

Global Asymptotic Stability of N-species Cooperative Reaction-Diffusion Systems With Time Delays
下载PDF
导出
摘要 文章研究了具有时滞N-物种互惠反应扩散系统及其相应的常微分系统。利用一般反应扩散系统的上下解方法,得到了解的存在性和平衡态方程正解的全局渐近稳定性的充分条件。这个结果导致了互惠反应扩散系统的持久性,平凡解和所有半平凡解的不稳定性和不存在非一致平衡解。 This paper is concerned with N - species time - delayed Lotka - Volterra cooperative reaction - diffusion systems and their corresponding ordinary differential systems without diffusion. Adopting the method of upper and lower solutions for a more general reaction - diffusion system, the initial and boundary conditions of reaction - diffusion of solutions and glo sys bal tems with time delays are dealt with to obtain the sufficient conditions for the existence asymptotic stability of a positive steady - state solution. The result leads to the permanence of the cooperative systems, the instability of the trivial and all forms of semitrivial solutions, and the nonexistence of nonuniform steady- state solutions
出处 《云南师范大学学报(自然科学版)》 2009年第2期13-17,共5页 Journal of Yunnan Normal University:Natural Sciences Edition
基金 国家自然科学基金(10571115) 陕西省自然科学基础研究资助项目(2007A11)
关键词 互惠模型 反应扩散系统 时滞 常微分系统 全局渐进稳定性 cooperative model reaction - diffusion time delay global asymptotic stability ordinary differential systems
  • 相关文献

参考文献3

二级参考文献31

  • 1Du Y H, Lou Y. S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model [J]. J Differential Equations, 1998,144(2):390-440.
  • 2Leung A, Clark D C. Bifurcations and large-time asymptotic behavior for prey-predator reaction-diffusions with Dirichlet boundary data [J]. J Differential Equations, 1980,35(1):113-127.
  • 3Ruan W H, Feng W. On the fixed point index and multiple steady-state solutions of reaction diffusion systems [J]. Differential Integral Equations, 1995,8(2):371-392.
  • 4Lu Z Y, Takeuchi Y. Permanence and global attractivity for competitive Lotka-Volterra systems with delay [J].Nonlinear Analysis, 1994,22(7):847-856.
  • 5Brown K J, Hess P. Positive periodic solutions of predator-prey reaction-diffusion systems [J]. Nonlinear Analysis, 1991,16(10): 1 147-1 158.
  • 6Ruan S G, Zhao X Q.Persistence and extinction in two species reaction diffusion systems with delays [J].J Differential Equations, 1999,156(1):71-92.
  • 7Du Y. Positive periodic solutions of a competitor-competitor-mutualist model[J].Differential Integral equations, 1996,19(4):1 043-1 066.
  • 8Pao C V. Convergence of solutions of reaction-diffusion systems with time delays [J].Nonlinear Analysis,2002,48(3):349-362.
  • 9Feng W. Coexistence, stability, and limiting behavior in a one-predator-two-prey model [J]. J Math Anal Appl, 1993,179(2):592-609.
  • 10Pao C V. Nonlinear parabolic and elliptic equations [M]. New York: Plenum,1992.

共引文献7

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部