摘要
在Krantz证明的定理[1]的基础上,讨论了Cn上K-双曲区域与开单位球双全纯等价的充要条件,并证明了此条件.给出了C-体度量与K-体度量的定义;K-双曲区域的定义,将Krantz的结论推广到K-双曲区域所需的引理即引理1及引理2.
This paper gives the definitions of Caratheodory volume, Kabayashi volume and K-hyperbolic domain. It also gives the lemmas needed in the proof of the main theorem and discusses the problem when Kabayashi metrics equal Caratheodory metrics. By the Schwarz lemma on K-hyperbolic domain in Cn, it proved that a K-hyperbolic domain is biholomorphic to the unit ball Cn if its Caratheodory volume is only equal to its Kabayashi volume.
出处
《北方工业大学学报》
1998年第1期1-4,共4页
Journal of North China University of Technology