摘要
二相扩散的运动边界问题是一种二维运动边界问题引进变换x=X-Ut后,运动边界问题转化为固定边界问题,其中运动边界效应转化为一种分布源利用Laplace变换得到了这个问题的分析解其结果表明,边界运动加快了系统向均衡状态过渡,这种影响呈指数形式,因而是很强的;运动边界效应与固定边界效应是耦合在一起的;运动边界效应呈历史相关性;
Moving boundar problem in diffussing process with 2 phase is a kind of 2 dimension moving boundary problem Emploied the transformation of x=X-vt,the moving boundary problem transformed into fixed boundary problem,where the effects of moving boundary transformed a distributive source An analytical solution is derived with Laplace′s transformation The results show:the motion of boundary accelerates transit of system to even state,which pocesses exponentied forms so that it it very strong,the effects of moving boundary are coupled on that of fixed boundary,effects of moving boundary relates with history,the solid material appears cosine pattern
出处
《沈阳工业大学学报》
EI
CAS
1998年第2期54-57,共4页
Journal of Shenyang University of Technology