期刊文献+

基于动态行为和模糊识别的Aspect挖掘方法

Aspect Mining Method Based on Dynamic Behavior and Fuzzy Recognition
下载PDF
导出
摘要 横切关注点是指分布在多个单元模块的功能代码,面向方面的编程是解决传统编程过程中横切问题的重要方法之一,其中一个重要问题是如何从现有系统中发现横切关注点。该文提出一种基于动态行为和模糊模式识别的Aspect挖掘方法,通过引入Aspect获取运行时方法调用的信息,使程序具有自动收集动态信息的能力,并利用模糊理论识别系统中的横切关注点。实验验证了该方法的有效性和实现的简洁性。 Crosscutting concerns are functionalities that distribute in many modular units, and Aspect-oriented Programming(AOP) is one of the most effective methods to solve this problem. An important question in AOP is how to identify crosscutting concerns from object oriented legacy system. A method based on dynamic behavior and fuzzy pattern recognition for Aspect mining is presented. The method uses Aspect to capture the runtime method for calling information and providing the ability of auto-collecting dynamic information. It uses fuzzy pattern recognition to identify the crosscutting concerns. An experiment is conducted in order to verify the validity of the method. The implementation of this method is simple and succinct.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第6期52-54,共3页 Computer Engineering
关键词 面向方面编程 ASPECT挖掘 模糊模式识别 Aspect-oriented Programming(AOP) Aspect mining fuzzy pattern recognition
  • 相关文献

参考文献6

  • 1Hursch W, Videira L C. Separation of Concerns[D]. Boston, USA: Northeastern University, 1995.
  • 2王斌,盛津芳,桂卫华.管理领域面向方面软件体系结构及软件过程[J].计算机工程,2007,33(15):83-85. 被引量:3
  • 3王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,2003..
  • 4何丽莉,白洪涛.用聚类分析方法挖掘Aspect[J].计算机集成制造系统,2006,12(1):149-153. 被引量:6
  • 5Shepherd D, Tourwe T, Pollock L. Using Language Clues to Discover Crosscutting Concems[C]//Proc. of International Workshop on Modeling and Analysis of Concerns. New York, USA: ACM Press, 2005.
  • 6Marin M, van Deursen A, Moonen L. Identifying Aspects Using Fan in Analysis[C]//Proc. of the 11th Working Conference on Reverse Engineering. Los Alamitos, CA, USA: IEEE Computer Society Press, 2004: 132-141.

二级参考文献26

  • 1ELRAD T,FILMAN R E,BADER A.Aspect-oriented programming[J].Communication of the ACM,2001,44(10):29-32.
  • 2ELRAD T,AKSIT M M,KICZALES G,et al.Discussing aspects of AOP[J].Communication of the ACM,2001,44(10):33-38.
  • 3HANNEMANN J,KICZALES G.Overcoming the prevalent decomposition of legacy code[EB/OL].http://www.cs.ubc.ca/~jan/papers/hannemann-icse2001.pdf,2004-10.
  • 4GRISWOLD W G,KATO Y,YUAN J J.Aspect browser:tool support for managing dispersed aspects[R].San Diego,CA,USA:Department of Computer Science and Engineering,University of California,1999.
  • 5BREU S,KRINKE J.Aspect mining using event traces[A].Proceedings of 19th IEEE International Conference on Automated Software Engineering[C].Linz,Austria:IEEE Computer Society,2004.310-315.
  • 6HAN J W,KANBR M.Data mining concepts and techniques[M].Beijing:Higher Education Press,2001.143-177.
  • 7KAUFAN L,ROUSSEEUW P J.Finding groups in data:an introduction to cluster analysis[M].New York,NY,USA:John Wiley&Sons,1990.
  • 8ZHANG T,RAMAKRISHNAN R,LIVNY M.Birch:an efficient data clustering method for very large databases[A].Proceedings of ACM SIGMOD[C].Montreal,Quebec,Canada:ACM Press,1996.103-114.
  • 9ESTER M,KRIEGEL HP,SANDER J,et al.A density based algorithm for discovering clusters in large spatial databases with noise[A].Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining[C].Portland:AAAI Press,1996.226-231.
  • 10GUHA S,RASTOGI R,SHIM K.CURE:an efficient clustering algorithm for large databases[A].Proceeding of the ACM SIGMOD International Conference on Management of Data[C].Seattle,WA,USA:ACM Press,1998.73-84.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部