期刊文献+

CP^n的S^1等变上同调群

The S^1 equivariant cohomology of CP^n
下载PDF
导出
摘要 以DeRham上同调群和等变上同调理论为基础,利用等变上同调的H.Cartan模型,即等变版本的DeRham上同调群,以复射影空间CPn为例,令S1为光滑作用在CPn的紧李群,计算CPn的S1等变上同调群HS*1(CPn). Based on theory of DeRham eohomology groups and equivariant cohomology, the S^1 equivariant eohomology of CP^n is configured out by the methods of the Cartan model of equivarian cohomology.
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2009年第1期114-117,共4页 Journal of Zhengzhou University of Light Industry:Natural Science
关键词 等变微分形式 等变外微分 等变上同调 H.Cartan模型 equivariant differential form equivariant exterior derivative equivariant cohomology H.Cartan model
  • 相关文献

参考文献6

  • 1Duistermaat J J, Heckman G J. On the variation in the cohomdogy of the symplectic form of the reduced phase space[ J ]. Invent Math, 1982,69:259.
  • 2Berline N, Vergne M. Z'ero d'un champ de Vecteurs et classes caracteristiques equirariants [ J ]. Duke Math J, 1983,50:539.
  • 3Atiyah M F, Bott R. The moment map and eguivariant cohomology [ J ]. Topology, 1984 ( 23 ) : 1.
  • 4Liu C C, Liu K, Zhou J. A proof of a conJecture of Marino Vafa on Hodge Integrals [ J ]. J Differential Geen,2003,65 (2) :289.
  • 5Rolf Berndt. An Introduction to Symplectic Geometry. Graduate Studies in Mathematics [ M ], Rhode Island : American Mathematical Society Providence,2000.
  • 6Theodor Brocker Tammo tom Dieek. Representations of Compact Lie Groups [ M ]. Springer - Verlag;GTM98, 1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部