期刊文献+

自适应间断有限元方法求解双曲守恒律方程 被引量:5

Adaptive Discontinuous Galerkin Methods for Hyperbolic Conservation Laws
下载PDF
导出
摘要 研究自适应Runge-Kutta间断Galerkin(RKDG)方法求解双曲守恒律方程组,并提出两种生成相容三角形网格的自适应算法.第一种算法适用于规则网格,实现简单、计算速度快.第二种算法基于非结构网格,设计一类基于间断界面的自适应网格加密策略,方法灵活高效.两种方法都具有令人满意的计算效果,而且降低了RKDG的计算量. For systems of nonlinear hyperbolic conservation laws, two adaptive discontinuous Galerkin finite element methods (ADGM) generating conforming unstructured triangular meshes are proposed. The first one is for structured mesh. It is simple and fast. The second one is for both structured and unstructured meshes. Based on posteriori error estimation of nonlinear hyperbolic conservation laws, a discontinuous interfacial mesh refinement indicator is shown in generating adaptive meshes. It is shown that the methods are flexible and reliable. Computation cost is decreased.
作者 徐云 蔚喜军
出处 《计算物理》 EI CSCD 北大核心 2009年第2期159-168,共10页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10771019)资助项目
关键词 自适应方法 间断有限元方法 双曲守恒律方程 adaptive methods discontinuous Galerkin finite element method hyperbolic conservation laws
  • 相关文献

参考文献1

二级参考文献11

  • 1Taylor G I 1950 Proc. Roy. Soc. London A 201 192.
  • 2Ye W H, Zhang W Y and He X T 2000 Acta Phys. Sin. 49 762(in Chinese).
  • 3Sharp D H 1984 Physica 12D 3.
  • 4Lindl J 1995 Phys. Plasmas 2 3933.
  • 5Dimonte G 2000 Phys. Plasmas 7 2255.
  • 6Jacobs J W and Catton I 1988 J. Fluid. Mech. 187 329.
  • 7Beck J B 1996 Doctoral Dissertation Purdue University.
  • 8Ofer D 1996 Phys. Plasmas 3 3073.
  • 9Knauer J P et al 2000 Phys. Plasmas 7 338.
  • 10Haan S W 1989 Phys. Reu. A 39 5812.

共引文献13

同被引文献39

  • 1蔚喜军,周铁.流体力学方程的间断有限元方法[J].计算物理,2005,22(2):108-116. 被引量:25
  • 2Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite ele- ment method for conservation laws II: general framework [ J ]. Math Comp, 1989, 52 ( 186 ) : 411-435.
  • 3Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-domina- ted problems[J]. Journal of Scientific Computing, 2001, 16(3) : 173-261.
  • 4Minchev B V, Wright W M. A review of exponential integrators for first order semi-linear prob- lems [ R ]. NTNU: Tech Rep, 2005 : 1-44.
  • 5Celledoni E, Marthinsen A, Owren B. Commutator-free Lie group methods[J]. Future Gen- e'ration Computer Systems, 2003, 19(3) : 341-352.
  • 6Kassam A K, Trefethen L N. Fourth-order time-stepping for stiff PDEs[ J]. SIAM J Sci Corn- put, 2005, 26(4) : 1214-1233.
  • 7Hochbruck M, Ostermarm A, Schweitzer J. Exponential Rosenbrock-type methods [ J]. SIAM J Numer Anal, 2009, 47( 1 ) : 786-803.
  • 8Hochbruck M, Ostermann A. Exponential integrators [ J]. Acta Numerica, 2010, 19 : 209- 286.
  • 9Hesthaven J S, Warburton T. Nodal Discontinuous Galerkin Methods: Algorithms, Analy- sis, and Applications [ M ]. New York: Springer, 2008.
  • 10Gottlieb S, Shu C W. Total variation diminishing Runge-Kutta schemes [ J ]. Mathematics of Computation, 1998, 67(221) : 73-85.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部