期刊文献+

灌注式生物反应器中大段多孔磷酸三钙载体内流场分布的模拟研究 被引量:4

Simulation of flow field within large scale porous β-TCP scaffold in perfusion bioreactor
下载PDF
导出
摘要 目的对灌注式生物反应器中大段多孔磷酸三钙载体内流场分布进行模拟研究。方法使用计算流体动力学(computational fluid dynamics,CFD)方法对我们自行设计的灌注式生物反应器中大段多孔β-TCP载体内流场分布情况进行了模拟研究,并对不同灌注速度条件下载体材料内的流体剪切应力进行了计算。结果利用CFD方法可以很好的模拟三维载体材料内的流场分布,并可以对载体材料内部的流体剪切应力进行计算。在我们的灌注反应体系中,3ml/min,6ml/min及9ml/min灌注速度条件下载体内主要区域的流速值分别为(0.227±0.062)mm/s、(0.459±0.125)mm/s以及(0.701±0.193)mm/s,而相应的流体剪切应力值分别为5.2±1.5mPa、10.6±3mPa以及16.2±4.6Pa。结论利用计算流体动力学(CFD)这一计算模型可以进行不同灌注系统之间结果的比较及不同显微结构载体之间结果的比较。并且可以根据细胞实验结果选择适于细胞分布增殖或者分化的流体剪切应力值,进而为组织工程中生物反应器的流速选择以及载体材料结构的加工提供依据。 Objecthe To simulate the flow field within large scale porous β-TCP scaffold in perfusion bioreactor. Method The computational fluid dynamics (CFD) method was used to simulate the flow conditions within large scale porous β-TCP scaffold in our newly designed perfusion bioreactor. The velocity field and the flow shear stresses within the scaffold at different perfusion flow rates were estimated by our simulation model. Result The velocity field and the flow shear stress throughout the scaffold could be well simulated with this method. The corresponding flow velocities in the scaffold pores at flow rate of 3 ml/min, 6 ml/min and 9 ml/ min were (0227±0.062) mm/s, (0.459±0.125) mm/s and (0.701±0.193) mm/s. The flow shear stresses within the scaffold at flow rate of 3 ml/min, 6 ml/min and 9 ml/min were 52 ± 1.5 mPa, 1.06 ±3 mPa and 162± 4.6 mPa respectively. Conclusions This simulation modeling could be used to compare results obtained from different perfusion bioreactor systems or different scaffold microarchitectures. It could allow specific shear stresses to be determined that optimize the distribution, proliferation or differentiation of seeded cells and the microarchitectures of the scaffold.
出处 《医用生物力学》 CAS CSCD 2009年第1期21-27,33,共8页 Journal of Medical Biomechanics
基金 上海市骨科内植物重点实验室建设基金(08DZ2230330) 国家自然基金资助项目(30600629)
关键词 计算流体动力学 生物反应器 流体剪切应力 多孔载体 Computational fluid dynamics (CFD) Bioreactor Flow shear stress (FSS) Porous scaffold
  • 相关文献

参考文献17

  • 1Martin I, Obradovic B, Freed LE, et al. Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage [J]. Ann Biomed Eng, 1999,27 :656-662.
  • 2Ishaug SL, Crane GM, Miller M J, et al. Bone formation by three-dimensional stremal osteoblast culture in biodegradable polymer scaffolds [J]. J Biomed Mater Res, 1997,36:17-28.
  • 3Xie GH, Cui Z, Yu J, et al. Identification of nif genes in N2-flxing bacterial strains isolated from rice fields along the Yangtze River Plain [J].J Basic Microbiol, 2006,46:56-63.
  • 4Klein-Nulend J, van der Plas A, Semeins CM, et al. Sensitivity of osteocytes to biomechanical stress in vitro [J], Faseb J, 1995,9:441-445.
  • 5Owan I, Burr DB, Tumer CH, et al. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain [J]. Am J Physiol, 1997,273: C810-815.
  • 6Smalt R, Mitchell FT, Howard RL, et al. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain[J]. Am J Physiol, 1997,273: E751-758.
  • 7Bancroft GN, Sikavitsas V1, van den Dolder J, et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner [J]. Proc Natl Acad Sci U S A, 2002,99: 12600-12605.
  • 8Goldstein AS, Juarez TM, Helmke CD, et al. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds [J].Biomaterials, 2001, 22:1279-1288.
  • 9Sikavitsas VI, Bancroft GN, Holtorf HL, et al. Mineralized matrix deposition by marrow strornal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces [J]. Proc Natl Acad Sci U S A, 2003,100:14683- 14688.
  • 10Cartmell SH, Porter BD, Garcia A.I, et al. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro [J]. Tissue Eng, 2003,9:1197- 1203.

二级参考文献12

  • 1谢幼专,朱振安,汤亭亭,戴尅戎,卢建熙,Hardouin Pierre.利用灌注型生物反应器促进干细胞在大段磷酸三钙载体内扩增[J].中华医学杂志,2006,86(23):1633-1637. 被引量:7
  • 2Xie Y, Hardouin P, Zhu Z, et al. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold [J]. Tissue Eng, 2006, 12(12): 3535-3543.
  • 3Wang Y, Uemura T, Dong J, et al. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials[J]. Tissue Eng, 2003, 9(6):1205-1214.
  • 4Bercoier M, Engelman MS. A finite element for incompressible fluid flow [J]. J Computational Physics, 1979, 30:181- 187.
  • 5Glowacki J, Mizuno S, Greenberger JS. Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture [J]. Cell Transplant, 1998, 7(3):319-326.
  • 6Goldstein AS, Juarez TM, Helmke CD, et al. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds [J]. Biomaterials, 2001, 22:1279-1288.
  • 7Lee JH, Lee S J, Khang G, et al. The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient [J]. J Colloid Interface Sci, 2000, 230(1): 84-90.
  • 8Leclerc E, David B, Griscom L, et el. Study of osteoblastic cells in a microfluidic environment [J]. Biomaterials, 2006, 27(4):586-595.
  • 9Reich KM, Frangos JA. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts [J].Am J Physiol. 1991, 261(3 Pt 1):C428-432.
  • 10Porter B, Zauel R, Stockman H, et al. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor [J].J Biomech, 2005, 38(3):543-549.

共引文献1

同被引文献43

  • 1樊瑜波,陶祖莱.组织工程生物反应器的生物力学[J].医用生物力学,2005,20(4):203-203. 被引量:8
  • 2李宏,魏娴,安琦,刘伟,崔磊,曹谊林.生物反应器的设计与组织工程肌腱的构建[J].医用生物力学,2006,21(2):115-119. 被引量:7
  • 3谢幼专,朱振安,汤亭亭,戴尅戎,卢建熙,Hardouin Pierre.利用灌注型生物反应器促进干细胞在大段磷酸三钙载体内扩增[J].中华医学杂志,2006,86(23):1633-1637. 被引量:7
  • 4Xie Y, Hardouin P, Zhu Z, et aL Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scafold [ J]. Tissue Eng, 2006, ]2(12): 3535-3543.
  • 5Klein-Nulend J, van der Plas A, Semeins CM, et al. Sen- sitivity of osteocytes to biomechanical stress in vitro [ J ]. Faseb J, 1995,9(5) : 441-445.
  • 6Owan I, Burr DB, Turner CH, et aL Mechanotransduction in bone: Osteoblasts are more responsive to fluid forces than mechanical strain [ J ]. Am J Physiol, ]997, 2"/3: C810-815.
  • 7Smalt R, Mitchell FT, Howard RL, et al. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain [J]. Am J Physiol, 1997, 273 (4) : E751-758.
  • 8Pienkowski D, Pollack SR. The origin of stress-generated potentials in fluid-saturated bone[ J]. J Orthop Res, 1983,1(1) : 30-41.
  • 9Pollack SR, Petrov N, Salzstein R, et al. An anatomical model for streaming potentials in osteons [J]. J Biomech, 1984, 17(8) : 627-636.
  • 10Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production[J].J Cell Physiol,1990, 143(1). 100-104.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部