期刊文献+

p_1-类图的双约束边色数 被引量:1

Double Edge Chromatic Number of p_1-Graphs
下载PDF
导出
摘要 双约束边染色是指对平面图G的边进行染色,使得相邻的边染不同的颜色且在同一个面上的边也有不同的颜色。图G的双约束边色数eχ/vf(G)是指对图G进行双约束边染色所需要的最少的颜色数,各种平面图的双约束边色数的上界是研究双约束边染色的焦点问题。证明了对于高度平面图中的p1-类图,恒有eχ/vf(G)≤Δ(G)+1成立,其中Δ(G)为图G的最大度。 The double - edge coloring is defined as coloring the edges of G such that arbitrary adjacent edges are assigned with distinct colors and the edges in the boundary of a face are also assigned with distinct colors. The double-edge chromatic number,Xe/vf (G) ,is the smallest number of colors such that G admits a double edge coloring, and the upper bound of the double - edge chromatic number for all kinds of planar graphs is the focus for studying the double edge coloring. The main result of this paper is to give an upper bound,△(G)+1, for P1 - graph, the special plane graph with high maximum degree.
作者 单伟 马巧灵
机构地区 济南大学理学院
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2009年第2期209-211,共3页 Journal of University of Jinan(Science and Technology)
基金 山东省自然科学基金(Y2003A01)
关键词 双约束边染色 双约束边色数 p1-类图 double edge coloring double chromatic number p1 - graph
  • 相关文献

参考文献8

  • 1Gary Chartrand, Ping Zhang.图论导引(英文版)[M].北京:人民邮电出版社,2006.
  • 2J A Bondy,U S R Murty. Graph theory with applications[ M]. New York : Macmillan, 1976.
  • 3马巧灵,单伟,吴建良.Halin图的有点面约束的边染色[J].山东大学学报(理学版),2007,42(4):24-27. 被引量:4
  • 4O V Borodin, D R Woodall. Thirteen coloring numbers for outerplane graph[ J]. Bull Inst Combin Appl, 1995,14:87 - 100.
  • 5王维凡.高度平面图完备色数的一个刻划.数学物理学报,2000,20:644-649.
  • 6Wang Weifan, Zhang Kemin. Edge -face chromatic number of plane graphs with high maximum degree [ J ]. Australa J Combin, 1998,18:235 -244.
  • 7张苏梅,王纪辉.高度平面图的L(p,q)-标号[J].山东大学学报(理学版),2007,42(4):39-43. 被引量:5
  • 8张忠辅,王建方,王维凡,王流星.若干平面图的完备色数[J].中国科学(A辑),1993,23(4):363-368. 被引量:16

二级参考文献18

  • 1J A Bondy,U S R Murty.Graph theory with applications[M].New York:Macmillan,1976.
  • 2O V Borodin,D R Woodall.Thirteen coloring numbers for outerplane graphs[J].Bull Inst Combin Appl,1995,14:87 ~ 100.
  • 3Zhang Zhongfu,Wang Jianfang,Wang Weifan,et al.The complete chromatic number of some planar graphs[J].Scientia Sinica (Series A),1993,4:363~ 368.
  • 4Zhang Zhongfu,Liu Xinzhong.On the complete chromatic ntmnber of Halin graphs[J].Acata Math Appl Sinica,1990,13:102 ~ 106.
  • 5R Halin.Studies on minimally n-connected graph[A].Comb Math And Applications[C].London:Academic Press,1971.129~ 136.
  • 6J A Bondy,U S R Murty.Graph theory with applications[M].New York:Macmillan,1976.
  • 7W K Hale.Frequency assignment:Theory and applications[J].Proc IEEE,1980,68:1 497~ 1 514.
  • 8Gerard J Chang,David Kuo.The L(2,1)-labeling problem on graphs[J].SIAM J Discrete Math,1996,(2):309~ 316.
  • 9J R Griggs,R K Yeh.Labeling graphs with a condition at ditance 2[J].SIAM J Discrete Math,1992,5(4):586 ~ 595.
  • 10J Georges,D W Mauro.Generalized vertex labelings with a condition at distance two[J].Congr Numer,1995,109:141 ~ 159.

共引文献23

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部