期刊文献+

一类六点八边图的图设计

G-design for a Class of Graphs with Six Vertices and Eight Edges
下载PDF
导出
摘要 设Kv是一个v个点的完全图,G为Kv的一个不含孤立点的简单子图.Kv的一个G-设计,常记为(v,G,1)-GD,是指一个二元组(X,B),其中X为Kv的顶点集,B是Kv的一些子图(亦称为区组)构成的集合,使得每一个区组与G同构,且Kv的任何一条边恰在B的一个区组中出现.文章讨论了一类六点八边图中尚未解决的3个图Gi(i=1,2,3)的图设计存在性问题,并证明了(v,Gi,1)-GD(i=1,2,3)存在的必要条件v≡0,1(mod16)且v16也是充分的.从而给出了这类六点八边图图设计存在的完全解. Let Kv be a complete graph with v vertices, and G be a simple subgraph without isolate vertices of Kv, A G - design of Kv, denoted by ( v, G, 1 ) - GD, is a pair ( X, B), where X is the vertex set of K, and B is the collection of subgraphs (called blocks) of Kv, such that each block is isomorphic to G, and any edge in K, occurs in exactly one block. In this paper, we discuss the existence problem of three graphs Gi( i = 1, 2, 3), which are unsolved in a class of graphs with six vertices and eight edges, and show that (v, Gi, 1) - GD( i= 1, 2, 3) exists if and only if v≡0, 1 (rood 16) and v≥ 16 . Finally, the complete solutions of graph design for this class of graphs are given.
作者 宫召华
出处 《淮北煤炭师范学院学报(自然科学版)》 2009年第1期5-9,共5页 Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
基金 国家自然科学基金资助项目(70772026)
关键词 图设计 带洞图设计 PBD-闭包 graph graph design holey graph design PBD - closure
  • 相关文献

参考文献9

  • 1BERMOND J C,SCHONHEIM J.G-decomposition of Kn,where G has four vertices or less[J].Discrete Math,1977,19:113 -120.
  • 2BERMOND J C,HUANG C,ROSE A,et al.Decomposition of complete graphs into isomorphic subgraphs with five vertices[J].Ars Combinatoria,1980,10:293-318.
  • 3YIN Jianxing,GONG Busheng.Existence of G-designs with |v(G)|=6[J].Comhinatoria Designs and Applications,1998,126:201 -218.
  • 4田子红,康庆德.关于K_(2,3)+e的图设计[J].河北师范大学学报(自然科学版),2002,26(1):12-17. 被引量:13
  • 5徐爱庆.关于三类六点七边图的图设计[J].南京师大学报(自然科学版),2003,26(1):23-29. 被引量:7
  • 6刘重阳.关于六点八边图的图设计(英文)[J].南京师大学报(自然科学版),2004,27(1):28-32. 被引量:4
  • 7宫召华,刘重阳.关于两个六点八边图的图设计[J].淮北煤炭师范学院学报(自然科学版),2006,27(2):14-17. 被引量:2
  • 8COLBOUM C J,DINITZ J H.The handbook of combinatorial designs[M].New York,Lndon:CRC Press Ine Boca Raton,1996.
  • 9HANANI H.Balanced incomplete block designs[J].Discrete Math,1975,11:255-369.

二级参考文献21

  • 1徐爱庆.一个特殊六点七边图的图设计[J].淮北煤炭师范学院学报(自然科学版),2004,25(4):19-22. 被引量:2
  • 2[1]BERMOND J C,SCHONHEIM J. G-decomposition of Kn,where G has four vertices or less [J]. Discrete Math,1997,19:113-120.
  • 3[2]BERMOND J C,HUANG C, ROSA A,et al. Decomposition of complete graphs into isomorphic subgraphs withfive vertices [J]. Ars Combinatoria, 1980,10 .. 293-318.
  • 4[3]YIN Jian-xing,GONG Bu-sheng. Existence of G-Designs with |v(G)|=6 [J]. Combinatoria Designs and Applica-tions, 1998,126: 201-218.
  • 5Xu Aiqing. G-design of six points and seven edges[J]. Journal of Nanjing Normal Uiversity, 2003,26:23-29.
  • 6Xu Aiqing. G-design with six vertices and seven deges[Jl, to appear.
  • 7Bermond J C, Huang C, Rose A, et al, Decomposition of complete graphs into isomorphic subgraphs with five vertices [ J ]. ARS Combinatoria, 1980, 10:293-318.
  • 8Bermond J C, SchiSnheim J. G-decomposition of Kπ where G has four vertices of less[J]. Discrete Math, 1977, 19: 113-120.
  • 9Hanani H. Balanced incomplete block designs[J]. Discrete Math, 1975,11:255-369.
  • 10Yin Jianxing, Gong Busheng. Existence of G-design with I v(G) v = 6[J]. Combinatoria Designs and Applications, 1998, 126:201-218.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部