摘要
设Mn是单位球面Sn+p中具有平行平均曲率向量的紧致可定向子流形,令|A|2为第二基本形式长度的平方.若|A |2< (2n(n-1)^(1/2))/(2θ(n-1)^(1/2)+n),则Mn是Sn+p中的标准球面;当|A|2=(2n(n-1)^(1/2))/(2θ(n-1)^(1/2)+n)时,还可以对子流形Mn进行分类.
Let M^n be a compact submanifold with parallel mean curvature vector immersed in the unit sphere S^n* p.Denote by | A|2 the square of the length of its second fundamental form. If | A|^2〈2n√(n-1)/[2θ√(n-1)+n ]then M^n is a standard sphere in S^n*p. We can also characterize M^n with | A|^2〈2n√(n-1)/[2θ√(n-1)+n ]
出处
《淮北煤炭师范学院学报(自然科学版)》
2009年第1期10-14,共5页
Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
关键词
平行平均曲率
第二基本形式
紧致
全脐
parallel mean curvature
second fundamental form
compact
totally umbilical