期刊文献+

单位球面中具有平行平均曲率向量的子流形(英文)

Submanifolds in a Unit Sphere with Parallel Mean Curvature Vector
下载PDF
导出
摘要 设Mn是单位球面Sn+p中具有平行平均曲率向量的紧致可定向子流形,令|A|2为第二基本形式长度的平方.若|A |2< (2n(n-1)^(1/2))/(2θ(n-1)^(1/2)+n),则Mn是Sn+p中的标准球面;当|A|2=(2n(n-1)^(1/2))/(2θ(n-1)^(1/2)+n)时,还可以对子流形Mn进行分类. Let M^n be a compact submanifold with parallel mean curvature vector immersed in the unit sphere S^n* p.Denote by | A|2 the square of the length of its second fundamental form. If | A|^2〈2n√(n-1)/[2θ√(n-1)+n ]then M^n is a standard sphere in S^n*p. We can also characterize M^n with | A|^2〈2n√(n-1)/[2θ√(n-1)+n ]
作者 侯晓阳
出处 《淮北煤炭师范学院学报(自然科学版)》 2009年第1期10-14,共5页 Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
关键词 平行平均曲率 第二基本形式 紧致 全脐 parallel mean curvature second fundamental form compact totally umbilical
  • 相关文献

参考文献12

  • 1SIMONS J.Minimal varieties in Riemannian manifolds[J].Ann of Math,1968,88:62-105.
  • 2CHERN S S,DO CARMO M,KOBYASHI S.Minimal submanifolds of a sphere with second fundamental form of constant length[J].Functional Analysisand Related Field,Berlin:Springer-Vedag,1970:59-75.
  • 3OKUMURA M.Hypersurfaees and a pinching problem on the second flundameantal tensor[J].Amer J Math,1974,96:207-213.
  • 4ALENCAR H,DO CARMO M.Hypersurfaces with constant mean curvature in spheres[J].Proc Amer Math Soc,1994,120:1 223-1 229.
  • 5HOU Z H.Hypersurfaees in a sphere with constant mean curvature[J].Pro Amer Math Soc,1997,125(4):1 193-1 196.
  • 6SANTOS W.Submanifolds with parallel mean curvature vector in spheres[J].Tohoku Math J,1994,46:403-415.
  • 7WANG M J,LI S J.Submanifolds with parallel normalized mean curvature vector in a sphere[J].Journal of Mathematical.Researchand Exposition,2003,23(3):520-524.
  • 8XU H W.A rigidity theorem for submanifolds with parallel mean curvature in a sphere[J].Arch der Math,1993,61:489-496.
  • 9YAU S T.Submanifolds with constant mean curvature I,II[J].Amer J Math,1974,96:346-366;1975,97:76-100.
  • 10XU H W.A pinching constant of Simon's type and isometric immersion[J].Chin Ann Math Ser A,1991,12(3):261-269.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部