摘要
判定微分方程是否可积或求其精确解是微分方程理论中最重要和最基本的问题之一.利用变换群的理论方法,将复域上的阿贝尔方程转化为可分离变量方程或Bernoulli方程,进而得到了一组较为适用的判定条件.
The determination of differential equation integrablity or its accuate solution is the most important and primary problem. The Abel equation integrability in complex domain is analyzed. By means of transformation group theory, the Abel equation can be alternated into separable equation or Bernoulli equation. Further-more, some ordinary integrable conditions are obtained for the abel equation.
出处
《大连交通大学学报》
CAS
2009年第1期94-97,共4页
Journal of Dalian Jiaotong University
关键词
阿贝尔方程
复域
线性变换
可积性
abel equation
complex domain
linear transforms
integrability