期刊文献+

复域上阿贝尔方程可积条件初步 被引量:1

Primary Study of Integrable Condition to Abel Equation in Complex Domain
下载PDF
导出
摘要 判定微分方程是否可积或求其精确解是微分方程理论中最重要和最基本的问题之一.利用变换群的理论方法,将复域上的阿贝尔方程转化为可分离变量方程或Bernoulli方程,进而得到了一组较为适用的判定条件. The determination of differential equation integrablity or its accuate solution is the most important and primary problem. The Abel equation integrability in complex domain is analyzed. By means of transformation group theory, the Abel equation can be alternated into separable equation or Bernoulli equation. Further-more, some ordinary integrable conditions are obtained for the abel equation.
出处 《大连交通大学学报》 CAS 2009年第1期94-97,共4页 Journal of Dalian Jiaotong University
关键词 阿贝尔方程 复域 线性变换 可积性 abel equation complex domain linear transforms integrability
  • 相关文献

参考文献7

  • 1WASTON G N. A Treatise on the Theory of Bessel Functions [ M ]. Cambridge, 1944 : 111-123.
  • 2RITT J F. Differential Algebra [M]. New York : Amer. Math. Soc. Coll. Pub,1950.
  • 3KOLCHIN E R. Algebraic Matric Groups and the Picard- Vessiot Theory of Homogeneous Linear Ordinary Differential Equation[ J]. Ann. of Math. , 1948 : 1-42,49.
  • 4PETER J. Olver. Applicaton of Lie Groups to Differential Equations [ M ]. Berlin : Springer- Verlag, 1986.
  • 5GUAN KE- YING, CHENG RU-YI. Global first integration and adimitted Lie troup of secon order polynomial system in complex domain [ J ]. Mathematical Biquaterly, Jouranl of Nanjing University, 1993,229-235.
  • 6卡姆克·E(德).常微分方程手册[M].张洪林译.北京:科学出版社,1977.
  • 7周大勇.基于Mathematica的特殊阿贝尔方程的可积性及其判定[J].大连铁道学院学报,2005,26(2):6-9. 被引量:2

二级参考文献1

共引文献1

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部