期刊文献+

位移时序预测的APSO-WLSSVM模型及应用研究 被引量:12

Study and application of displacement time series forecast based on APSO-WLSSVM
下载PDF
导出
摘要 引入改进的粒子群算法对小波核函数最小二乘支持向量机进行优化,提出了位移时间序列预测的改进粒子群优化小波最小二乘支持向量机预测模型(APSO-WLSSVM)。该模型具有小波变换的良好时、频域分辨能力和支持向量机的非线性学习能力;同时利用粒子群算法优化小波最小二乘支持向量机的参数,避免了人为选择参数的盲目性,从而提高了模型的预测精度。为证明该模型的优越性,将该模型与传统的高斯核函数支持向量机模型的预测结果作了对比,结果表明该模型较传统方法预测精度有了明显提高。最后将该模型用于锦屏一级水电站左岸边坡和导流洞进行变形预测,预测结果表明该方法科学可靠,在岩土体位移时序预测中具有良好的实际应用价值。 The model of wavelet least squares support vector machines (WLSSVM) is optimized by adaptive particle swarm optimization (APSO), and a new model named as wavelet least squares support vector machine based on adaptive particle swarm optimization (APSO-WLSSVM) is put forward. The model combines good time domain, frequency domain resolving ability of wavelet transformation and nonlinear learning ability of SVM. The adaptive particle swarm optimization is used to optimize the parameters of SVM so as to avoid artificial arbitrariness and enhance the forecast accuracy. For comparison, the model of APSO-WLSSVM and the traditional SVM (Gauss kernel function) are used to forecast the same displacement time series. The result shows that the former is better than the latter in forecast accuracy. The model is used to forecast the left back slope and diversion tunnel of Jinping First-stage Hydropower Station. The forecast values are in good agreement with the measured ones, indicating that the APSO-WLSSVM is feasible and precise and can be well applied to the forecast of displacement time series.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2009年第3期313-318,共6页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金重点项目(50539110) 国家重点基础研究发展规划(973)项目(2002CB412707) 国家科学支撑计划项目(2006BAB04A02)
关键词 小波函数 最小二乘支持向量机 粒子群算法 位移时间序列预测 wavelet function least squares support vector machines particle swarm optimization displacement time series forecast
  • 相关文献

参考文献10

  • 1VLADIMIR N VAPNIK. The nature of statistical learning theory[M]. NY: Springer-Verlag, 1995.
  • 2NELLO CRISTIANINI, JOHN SHAWE-TAYLOR. An introduction to support vector machine and other kernel-based learning methods[M]. London: Cambridge University Press, 2000.
  • 3SMOLA A, SCHOLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199- 222.
  • 4GAVIN C CAWLEY, NICALA L C TALBOT. Improved sparse least squares support vector machines[J]. Neurocomputing, 2002(48): 1025 - 1031.
  • 5李元诚,李波,方廷健.基于小波支持向量机的非线性组合预测方法研究[J].信息与控制,2004,33(3):303-306. 被引量:26
  • 6ZHANG Q, BENVENISTE A. Wavelet networks[J]. IEEE Trans on Neural Networks, 1992, 3(6): 889 - 898.
  • 7崔万照,朱长纯,保文星,刘君华.最小二乘小波支持向量机在非线性系统辨识中的应用[J].西安交通大学学报,2004,38(6):562-565. 被引量:44
  • 8SHI Y H, EBERI-IART R C. Parameter selection in particle swarm optimization[C]//Proc of the 7th Annual Conference on Evolutionary Programming. San Diego, USA, 1998.
  • 9EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995:66 - 73.
  • 10赵洪波,冯夏庭.非线性位移时间序列预测的进化-支持向量机方法及应用[J].岩土工程学报,2003,25(4):468-471. 被引量:94

二级参考文献14

  • 1张国平.B—G组合预测理论剖析[J].预测,1988,7(5):22-25. 被引量:27
  • 2刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997..
  • 3Burge CJC. A tutorial on support vector machines for pattern recognition[J] .Data Mining and Knowledge Discovery, 1998, (2) :121 - 167.
  • 4Alex J Smola, Bernhard Schoelkopf. A Tutorial on Support Vector Regression[R]. NeuroCOLT2 Technical Report Series, 1998.
  • 5John C Platt. Sequeotial Minimal Optimization:A Fast Algorithm for training Support Vector machines[R].Technical Report,1998
  • 6Vapnik V N. The nature of statistical learning theory [M]. New York: Springer-Verlag. 1995.
  • 7Zhang Q,Benveniste A. Wavelet networks [J]. IEEE Trans on Neural Networks,1992,3(6):889-898.
  • 8Suykens J A K,van Gestel T, De M B,et al. Least squares support vector machines [M]. Singapore: World Scientific, 2002.
  • 9Daubechies I. The wavelet transform,time-frequency localization and signal analysis [J]. IEEE Trans on Information Theory, 1990,36(5):961-1 005.
  • 10Mercer J. Functions of positive and negative type and their connection with the theory of integral equations [J]. Philosophical Transactions of the Royal Society of London:A,1909,(209):415-446.

共引文献154

同被引文献112

引证文献12

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部