摘要
研究共轭梯度算法的整体收敛性,在放宽了的强Wolfe搜索(18)、(19)下证明了[1]中提出的修正HS共轭梯度算法的收敛性,在充分下降性条件下,βk=maxβHSk,0{}时也具有整体收敛性,同时,βk=max0,βPRk{}时,利用Armijo搜索和Goldstein搜索的共轭梯度法也具有整体收敛性.
In this paper, the global convergence properties of conjugate gradient methods are studied. Under the relax strong Wolfe linesearch, we study the global convergence of HS method by using sufficient descent condition and prove the global convergence of PR conjugate gradient method with Armijo or Goldstein linesearch is also established. Meanwhile the global convergence of a modified HS conjugate gradient method with general Wolfe linesearch without sufficient descent condition is proved.
出处
《曲阜师范大学学报(自然科学版)》
CAS
1998年第2期31-38,共8页
Journal of Qufu Normal University(Natural Science)
关键词
共轭梯度法
充分下降性
整体收敛性
conjugate gradient method sufficient descent condition global convergence