期刊文献+

采用LS-SVM的自来水厂沉淀池出水浊度建模 被引量:1

Forecast Model for Settling Tank Water Turbidity in Waterworks Using LS-SVM
下载PDF
导出
摘要 加药混凝过程是自来水厂生产工艺的一个重要环节,如何对沉淀池出水浊度进行预测一直是个热点问题。自来水厂加药混凝过程是大滞后、非线性和时变的复杂动态系统,针对这一过程进行机理模型分析非常困难的特点,采用最小二乘支持向量机(LS-SVM)对这一过程进行建模研究,给出了沉淀池出水浊度预测模型。通过实际应用表明建立的预测模型拟合误差小、推广性能好,具有较好的预测效果,可以应用到对加药混凝过程进行优化和控制中。 Chemical dosage and flocculation are important procedures in production of waterworks ; and prediction of outlet water from precipitating tank is always the key point. It is very difficult to do the analysis on mechanism model for the dosing and flocculation process because the process is a complicated dynamic system which features large time lag, nonlinear, and time varying. By using least square support vector machine ( LS-SVM ), the modeling research is conducted for the process ; and the predictive model of turbidity of outlet water is established. The practical application shows that the model offers small fitting error,good to be propagated ,and better predicted effects. It can be used on optimization and control of the dosing and floceulation process.
出处 《自动化仪表》 CAS 北大核心 2009年第3期63-65,共3页 Process Automation Instrumentation
关键词 最小二乘支持向量机 加药 混凝 预测 浊度 模型 LS-SVM Chemical dosage Flocculation Prediction Turbidity Model
  • 相关文献

参考文献8

二级参考文献26

  • 1涂植英 朱麟章.过程控制系统[M].北京:机械工业出版社,1998..
  • 2WangSQ(王树青) YuanYJ(元英进).Automatic Technology of Biochemical Process[M].Beijing:化学工业出版社,1999..
  • 3Nomikos P,MacGregor JF.Monitoring batch processes using multiway principal component analysis.AIChE J,1994,40 (8):1361-1375
  • 4Massimo CD,Montague GA,Willis MJ et al.Towards improved penicillin fermentation via artificial neural networks.Computers and Chemical Engineering,1992,16(4):283-291
  • 5Xiong ZH,Zhang J.Neural network model-based on-line reoptimisation control of fed-batch processes using a modified iterative dynamic programming algorithm.Chemical Engineering and Processing,2005,44(4):477-484
  • 6Vapnik VN.The Nature of Statistical Learning Theory,New York:Springer,1995
  • 7Suykens JAK,Vandewalle J.Least squares support vector machine classier.Neural Processing Letters,1999,9 (3):293-300
  • 8Birol G,Undey C,Cinar A.A modular simulation package for fedbatch fermentation:penicillin production.Computers and Chemical Engineering,2002,26 (11):1553-1565
  • 9Bajpai,R,Reuss,M.A mechanistic model for penicillin production.Journal of Chemical Technology and Biotechnology,1980,30:330-344
  • 10Undey C,Tatara E,Cinar A.Intelligent real-time performance monitoring and quality prediction for brach/fed-batch cultivations.Journal of Biotechnology,2004,108 (1):61-77

共引文献162

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部