摘要
设p为奇素数,n、m、e、r是满足如下条件的正整数:n=em,1≤r≤e-1,(r,e)=1,ω是p次本原单位根,q=pm,Ψ:z→ωtrm1(z)是有限域Fq上加法特征.对任意a,b∈Fqe,定义指数和σ(a,b)=x∈FqeΨ[trnm(ax+bxqr+1)],其中trnm(·)表示从Fqe到Fq上的迹函数.文中求出了指数和σ(a,b)的值,并讨论了该指数和在扩频序列设计中的应用.
Let p be an odd prime, n,e,m and r be integers satisfying the following conditions:n=em,1≤r≤e-1,(r,e)=1. Let ω be a complex primitive pth root of unity and Ψ:z→w tr m 1(z) be the nontrivial addition character of the finite field F q(q=p m). For every pair a,b∈F q e ,Let σ(a,b) denote the exponential sum: σ(a,b)=x∈F q e Ψ[tr n m(ax+bx q r+1 )], where tr n m(·) denotes the trace function of F q e over F q. In this paper we determined the values of the exponential sum σ(a,b) and discussed the applications of exponential sums in spreading sequences designs.
出处
《应用科学学报》
CAS
CSCD
1998年第1期12-17,共6页
Journal of Applied Sciences
基金
国防科技大学校青年基金