期刊文献+

Normal ordering and antinormal ordering of the operator (fQ+gP)n and some of their applications 被引量:4

Normal ordering and antinormal ordering of the operator (fQ+gP)n and some of their applications
下载PDF
导出
摘要 In this paper by virtue of the technique of integration within an ordered product (IWOP) of operators and the intermediate coordinate-momentum representation in quantum optics, we derive the normal ordering and antinormal ordering products of the operator (fQ+gP)n when n is an arbitrary integer. These products are very useful in calculating their matrix elements and expectation values and obtaining some useful mathematical formulae. Finally, the applications of some new identities are given. In this paper by virtue of the technique of integration within an ordered product (IWOP) of operators and the intermediate coordinate-momentum representation in quantum optics, we derive the normal ordering and antinormal ordering products of the operator (fQ+gP)n when n is an arbitrary integer. These products are very useful in calculating their matrix elements and expectation values and obtaining some useful mathematical formulae. Finally, the applications of some new identities are given.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1534-1541,共8页 中国物理B(英文版)
基金 Project supported by the Natural Science Foundation of Shandong Province of China (Grant No Y2008A23) the Natural Science Foundation of Liaocheng University (Grant No X071049)
关键词 normal ordering antinormal ordering IWOP technique intermediate coordinatemomentum representation normal ordering, antinormal ordering, IWOP technique, intermediate coordinatemomentum representation
  • 相关文献

参考文献14

  • 1Glauber R J 1963 Phys. Rev. 131 2766
  • 2Dirac P A M 1985 Principles of Quantum Mechanics (Oxford; Oxford University Press)
  • 3Fan H Y and Liu N L 1999 Chin. Phys. Lett. 16 472
  • 4Fan H Y 2001 Chin. Phys. Lett. 18 1427
  • 5Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 147
  • 6Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Press) (in Chinese)
  • 7Fan H Y 1991 Phys. Lett. A 161 1
  • 8Fan H Y and Fan Y 2002 Commun. Theor. Phys. 38 297
  • 9Fan H Y 2001 Entangled State Representations in Quantum Mechanics and Their Applications (Shanghai: Shanghai Jiao Tong University Press) (in Chinese)
  • 10Wang Z X and Guo D R 1965 General Theory of Special Functions (Beijing: Science Press) (in Chinese)

同被引文献11

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部