期刊文献+

非线性MDDEs系统的隐式Euler法的稳定性 被引量:12

Stability of Implicit Euler Method to Nonlinear Systems of Multidelay Differential Equations
下载PDF
导出
摘要 给出了一类非线性多滞量时滞微分方程系统的理论解为稳定的一个充分条件.特别指出隐式Euler法求解该类问题时是数值稳定的. This paper presents a sufficient condition on the stability of theoretical solutions for a class of nonlinear systems of multidelay differential equations (MDDEs).In particular,it is pointed out that the implicit Euler method for this system is numerically stable.
作者 张诚坚
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 1998年第1期1-4,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金
关键词 时滞微分方程 EULER法 稳定 delay differential equation,Euler method,stability
  • 相关文献

参考文献2

  • 1Tian H J,SIAM J Numer Anal,1996年,33卷,3期,883页
  • 2Liu M Z,IMA J Numer Anal,1990年,10期,31页

同被引文献51

  • 1[1] HUANG Cheng-ming.Numerical Analysis of Nonlinear Delay Different ial Equations[D].Ph.D.Thesis.Graduate School of China Academy of Engineering P hysics.,1999.
  • 2[2] TIAN H J,KUANG J X.The Stability of the θ-methods in the Numerica l Solut ion of Delay Differential Equations with Several Delay Terms[J].J.Comput.Appl. Math.,1995,58:171~181.
  • 3匡蛟勋,鲁连华,田红炯.非线性滞后微分方数值方法的稳定性[J].上海师范大 学学报,1993,(3):1-8.
  • 4[5] LI Shou-fu.Stability Criteria for One-leg Methods and Linear Multist ep Methos[J].Natur.Sci.Xiantan Uviv.,1987,9:21~27.
  • 5[6] Dahlquis G.G-stability is Equivalent to A-stability[J].BIT,1978,18:384 ~401.
  • 6[7] AL-MUTIB A N.Stability Properities of Numerical Methods for Solvi ng Delay Differential Equations[J].Inter.J.Computer Math.,1984,16:159~168.[ ZK)
  • 7[8] TORELLI L.Stability of Numerical Methods for Solving Delay Differe ntial Equations[J].Inter.J.Computer Math.,1984,16:159~168.
  • 8[1]Bellen A. Contractivity of continuous Runge-Kutta methods for delay differential equations. Appl.Numer. Math.,1997,24:219-232
  • 9[2]Bellen A, Zennaro M. Strong contractivity properties of numerical methods for ordinary and delay differential equations. Appl. Numer. Math., 1992,9:321-346
  • 10[6]Torelli L. Stability of numerical methods for delay differential equations. J.Comput. Appl. Math.,1989,25:15-26

引证文献12

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部