期刊文献+

基于原—对偶混合梯度下降法的图像恢复算法 被引量:1

Image restoration algorithm based on primal-dual hybrid gradient descent method
下载PDF
导出
摘要 对基于原—对偶混合梯度下降法的图像恢复算法进行了改进。在原算法中,步长参数的设计对其恢复效果和收敛速度影响较大。为了改善算法性能,通过引入中间变量改变算法的形式,然后分离对偶向量的分量,用加权矩阵取代原算法中的步长参数,并对其分开设计。数值实验表明,在峰值信噪比(PSNR)和视觉效果相当的前提下,和原算法相比,降低了参数设计对算法性能的影响,且计算时间减少50%左右。 An improved algorithm for image restoration was proposed based on Primal-Dual Hybrid Gradient Descent (PDHGD) method. The preferences have a great impact on convergence rate of the known algorithm. The form was changed by introducing new variable, and the elements of the dual vector of the primal-dual hybrid model were separated, and then stepsize was replaced by using parameter matrices. The numerical experiments show that the improved algorithm has advantage on choosing parameters compared to the known algorithm, and the iterative number and CPU' time nearly declined by 50%, and at the same time, the improved algorithm has exactly the same effect on image restoration.
出处 《计算机应用》 CSCD 北大核心 2009年第4期987-989,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(6057302760603014)
关键词 全变分 图像恢复 原-对偶 混合梯度 Total Variation (TV) image restoration primal-dual hybrid gradient
  • 相关文献

参考文献6

  • 1RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[ J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259-268.
  • 2CHANT F, GOLUB G H, MULET P. A nonlinear primal dual method for total variation based image restoration[ J]. SIAM Scientific Computing, 1999, 20(6) : 1964 - 1977.
  • 3CARTER J L. Dual methods for total variation-based image restoration[ D]. Los Angeles, CA, USA: University of South California, Computer Science Department, 2001.
  • 4CHAMBOLLE A. An algorithm for total variation minimization and application[ J]. Mathematical Imaging and Vision, 2004, 20(1/2) : 89 - 97.
  • 5ZHU M Q. Fast numerical algorithms for total variation based image restoration[D]. Los Angeles, CA, USA: University of South California, Computer Science Department, 2008.
  • 6XIU N, ZHANG J. Some recent advances in projection methods for variational inequalities[ J]. Computational and Applied Mathematics, 2003, 152(1/2) : 559 - 585.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部