期刊文献+

基于背景优化的Mean Shift目标跟踪算法 被引量:5

Mean Shift tracking algorithm based on background optimization
下载PDF
导出
摘要 针对传统的Mean Shift算法在目标快速运动且背景区域变化较大时,容易丢失跟踪目标的问题,提出了一种基于背景优化的Mean Shift目标跟踪算法。该算法引入混合直方图并对直方图重新量化,再通过减少背景像素在概率密度函数(PDF)中的权重来对背景进行优化,从而降低背景区域对跟踪的影响。实验结果表明,当目标快速运动,且背景区域变化较大时,该算法仍然能够实现对运动目标的准确跟踪。 The traditional Mean Shift tracking algorithm would lose target when the target is in rapid movement or the background is changing obviously. A Mean Shift tracking algorithm based on background optimization was proposed. The algorithm used cross-join histogram and re-quantilization, and optimized background by decreasing the weight of the Probability Density Function (PDF) of the background pixels. Then the impact of the background on the target region was reduced. The experimental results show that, when the target moves rapidly and the background region changes a lot, the proposed method can still track the target accurately.
出处 《计算机应用》 CSCD 北大核心 2009年第4期1015-1017,共3页 journal of Computer Applications
关键词 运动目标跟踪 Mean SHIFT算法 背景优化 object tracking Mean Shift algorithm background optimization
  • 相关文献

参考文献5

  • 1CHEN YI-ZONG. Mean shift, mode seeking, and clustering[ J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1995, 17(8) : 790 -799.
  • 2COMANICU D, MEER P. Mean shift: A robust approach toward feature space analysis[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 3COMANICU D, RAMESH V, MEER P. Real-time tracking of nonrigid objects using mean shift[ C]// Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Washington, D C: IEEE Computer Society, 2000:142 - 149.
  • 4YANG BO, ZHOU HONG-JUN, WANG XUE. Target tracking using predicted camShift[ C]// Proceedings of the 7th World Congress on Intelligent Control and Automation. Washington, D C: IEEE Computer Society, 2008:8501 - 8505.
  • 5PRASAD B G, BISWAS K K, GUPTA S K. Region-based image retrieval using integrated color, shape, and location index[ J]. Computer Vision and Image Understanding, 2004, 94( 1/3): 193 - 233.

同被引文献24

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部