期刊文献+

一种新的用户事务算法

New user transaction algorithm
下载PDF
导出
摘要 提出了双阈值用户事务算法。根据用户所访问的页面数来判断该用户是否为偶然用户,利用网络的拓扑结构和网页最低兴趣度来衡量一个网页是否为用户感兴趣的页面。改进了数据预处理过程,删除了偶然用户引起的访问记录,以及链接页面和用户不感兴趣的页面,生成一种有效的访问页面序列,即双阈值用户事务。通过事例对算法的有效性进行了论证。 This study proposed a user business algorithm with double thresholds. This algorithm first acted according to the page number which the user visited to judge whether this user was the accidental user, and then the network topology and homepage lowest interest degree to judge whether the homepage appealed to the users. This method improved the data pretreatment process, and deleted the visit record which the accidental user caused, as well as the link pages and the pages that users were not interested in, produced one kind of effective visiting page sequence, namely double thresholds user business. This paper has proved the validity of the algorithm through an instance.
出处 《计算机应用》 CSCD 北大核心 2009年第4期1099-1101,1105,共4页 journal of Computer Applications
关键词 数据挖掘算法 数据预处理 用户事务 双阈值 data mining algorithm data preprocessing user transaction double thresholds
  • 相关文献

参考文献5

  • 1STOICA I, MORRIS R, KARGER D, et al. Chord: A scalable peer-to-peer lookup service for intemet applications[ C]// Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols For Computer Communications. New York: ACM Press, 2003:149 - 160.
  • 2赵伟,何丕廉,陈霞,谢振亮.Web日志挖掘中的数据预处理技术研究[J].计算机应用,2003,23(5):62-64. 被引量:62
  • 3孔昊,周长胜.Web日志挖掘预处理研究[J].北京机械工业学院学报,2005,20(4):28-31. 被引量:8
  • 4郭新涛,梁敏,阮备军,朱扬勇.挖掘Web日志降低信息搜寻的时间费用[J].计算机研究与发展,2004,41(10):1737-1747. 被引量:5
  • 5LEONG B, LISKOV B, DEMAINE E D. EpiChord: Parallelizing the chord lookup algorithm with reactive routing state management [C]// Proceedings of the 12th International Conference on Networks: ICON 2004. Washington, D C: IEEE Computer Society, 2004: 270-276.

二级参考文献20

  • 1庄力可,寇忠宝,张长水.网络日志挖掘中基于时间间隔的会话切分[J].清华大学学报(自然科学版),2005,45(1):115-118. 被引量:24
  • 2(加)HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 3Büchner AG, Mulvenna MD. Discovering Internet Marketing Intelligence through Online Analytical Web Usage Mining [ J]. ACM SIGMOD Record, 1998,27(4) :54 -61.
  • 4Mike Perkowitz, Oren Etzioni. Adaptive Web sites: An AI challenge. IJCAI97, Nagoya, Japan, 1997
  • 5F Coenen, G Swinnen, K Vanhoof, et al. A framework for self adaptive Websites: Tactical versus strategic changes. KDD2000,Boston, 2000
  • 6P Pirolli, S K Card. Information foraging. Psychological Review,1999, 106(4): 643~675
  • 7Ramakrishnan Srikant, Yinghui Yang. Mining Web logs to improve Website organization. The 10th Int'l World Wide Web Conf(WWWl0), Hong Kong, 2001
  • 8Mike Perkowitz, Oren Etzioni. Towards adaptive websites:Conceptual framework and case study. Artificial Intelligence,2000, 118(1-2): 245~275
  • 9Baoyao Zhou, Jinlin Chen, Jin Shi, et al. Website link structure evaluation and improvement based on user visiting patterns. The 12th ACM Conf on Hypertext and Hypermedia (Hypertext 2001), Arhus, Denmark, 2001
  • 10Yi Dongshen, Qiang Yang, Zhong Zhang, et al. A graph-based optimization algorithm for website topology using interesting association rules. PAKDD2003, Seoul, Korea, 2003

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部