期刊文献+

3-流形相对亏格的可加性(英文)

The additivity of the relative genus of 3-manifolds
下载PDF
导出
摘要 设M为一个紧致连通可定向的3-流形,M=F1∪F2为M的分支的无交并.M的一个Hee-gaard分解V1∪SV2称为是一个相对于(M;F1,F2)的Heegaard分解,若-V1=F1且-V2=F2.用g(M;F1,F2)来表示M的相对于(M;F1,F2)的所有Heegaard分解中的最小亏格,称之为M的相对于(M;F1,F2)的Heegaard亏格(或简称为M的相对亏格)。证明了3-流形的相对亏格在连通和下是可加的。 Let M be a compact connected orientable 3 - manifold, and OM = F1 U F2 a disjoint union of components of aM. A Heegaard splitting V1 UsV2 of M is called a relative Heegaard splitting for ( M; F1, F2 ) if a _ V1 = F1 and a _ V2 = F2. By g ( M; F1, F2 ) denote the relative Heegaard genus of M, which is equal to the minimal genus of all relative Heegaard splittings for ( M; F1, F2 ). The obtained main result is that the relative genus of 3 -manifolds are additive under connected sum.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第6期765-768,共4页 Journal of Natural Science of Heilongjiang University
基金 Supported by of Natural Science Foundation of China(15071034)
关键词 3-流形 相对亏格 连通和 3 - manifolds relative genus connected sum
  • 相关文献

参考文献6

  • 1Scharlemann M. Heegaard splittings of compact 3 - manifolds, Handbook of gometric topology [ M ]. Toronto : North Holland,2002.
  • 2Allen H. Notes on basic 3 - manifold topology [ EB/OL ]. http ://www. math. cornell. edu/- hatcher/3 M/3 Mdownloads. html.
  • 3Hempel J. 3 - manifolds, Annals of math studies [ M ]. Princeton : Princeton University Press, 1976 : 8 - 45.
  • 4Jaco W. Lectures on three manifold topology[ C ]//CBMS Regional Conference Series in Mathematics. Amer Math Soc : [ s. n ]. 1980:5 - 30.
  • 5Casson A J, M cA C. Gordon, reducing Heegaard splittings[ J]. Topology and Its Applications, 1987,27:275 -283.
  • 6Scharlemann M, Abigail T. Heegaard splitting of (surface) ×Ⅰ are standard[ J ]. Math Ann, 1994,295:549 -564.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部