期刊文献+

一类连续控制SI模型的动力学分析 被引量:3

Dynamic Behaviors of SI Model with Continous Pest Control
下载PDF
导出
摘要 建立并研究了一类连续释放害虫策略的SI模型,讨论了SI模型边界平衡点的存在性和局部稳定性,证明了系统在一定条件下存在唯一的全局渐进稳定的正平衡点.最后通过数值模拟进行了验证. In this paper,a SI mathematical model concerning continous pest control strategies is proposed and investigated. It is discussed that the boundary equilibrium is existential and locally stable. It is proved that the system admits a globally asymptotically stable positive equilibrium under appreliate conditions. Furthur more, the existence of a positive equilibrium is also studied by mesns of numeril simulation.
作者 刘开源
机构地区 鞍山师范学院
出处 《鞍山师范学院学报》 2008年第6期1-4,共4页 Journal of Anshan Normal University
关键词 连续控制 动力学 正平衡点 稳定性 Continuous Control Dynamics Positive Equilibrium Stability
  • 相关文献

参考文献12

  • 1A J Cherry, C J Lomer, D Djegui, et al. Pathogen incidence and their potential as microbial control agents in IPM of maize stemborers in West Africa[ J]. Biocontrol, 1999,44 (a) :301 - 327.
  • 2P Ferron. Pest Control Using the Fungi Beauveria and Metarhizinm. Microbial Control in Pests and Plant Diseases [ M ]. New York: Academic Press, 1981.
  • 3H J Freedman. Graphical stability, enrichment, and pest control by a natural enemy [ J ]. Math Biosci, 1976,31:207 -225.
  • 4J Grasman, O A Van Herwarrden, L Hemerik, et al. A two-component model of host-parasitoid interactions : determination of the size of i nundative releases ofparasitoids in biological pest control[ J ] Math Biosci ,2001,196:207 -216.
  • 5J C Van Lenteren. Measures of Success in Biological Control of Anthropoids by Augmentation of Natural Enemies [ M ]. Boston: Kluwer Press ,2000.
  • 6H D Burges, N W H ussey. Microbial Control of Insects and Mites [ M ]. New York:Academic Press, 1971.
  • 7L A Falcon. Problem associated with the use of arthropod viruses in pest control [ J ]. Annu Rev Entomol, 1976,21:305 - 324.
  • 8Y Tanada. Biological Control of Insect Pests and Weeds[ M ]. England:Chapman and Hall, 1964.
  • 9R M Anderson, R M May. Regulation and stability of host-parasite population interactions I Regulatory Processes [ J ]. J Anim Ecol, 1978,47:219 - 247.
  • 10谢于民.时滞对一类变系数SIR传染病模型的影响[J].鞍山师范学院学报,2006,8(6):4-7. 被引量:1

二级参考文献7

  • 1[1]HETHCOTE,H W.Qualitative analyses of communicable disease models[J].Math Biosci,1976,(28):335-356.
  • 2[2]KOROBEINIKOV A,WAKE GC.Lyapunov Functions and Global Stability for SIR,SIRS,and SIS Epidemiological Models[J].Applied Mathematics Lettem,2002,(15):955-960.
  • 3[3]E Beretta,Y Takeuchi,Convergence results in SIR epidemic model with varying popu-lation sizes[J].Nonl Anal,1997,(28):1909-1921.
  • 4[4]Takeuchi Y,Ma W,Beretta E.Global asymptotic properties of a delay SIR epidemicmodel with-nite incubation times[J].Nonl Anal,2000,(42):93l-947.
  • 5[5]Sanyi Tang,Lansun Chen.Global Qualitative Analysis for a Ratio-Dependent Predator-Prey Model with Delay[J].J Math Anal Appl,2002,(266):401-419.
  • 6[6]Ma W,Takeuchi Y,Hara T,etal.Permanence of an SIR epidemic model withdistributed time delays[J].Tohoku Math J,2002,(54):581-591.
  • 7[7]Hale J K.Theory of Functional Di erential Equations[M].New York:Springer-verlag,1997.

同被引文献14

  • 1郑丽丽,王豪,方勤华.一类具有非线性传染力的阶段结构SI模型[J].数学的实践与认识,2004,34(8):128-135. 被引量:7
  • 2C W Clark. Mathematical Bioeconomics [ M ]. New York : Wiley, 1990.
  • 3Kuang Yang. Delay differential equation with Application in population dynamics[ M ]. New York: Academic Press, 1987.
  • 4V Lakshmikantham, D D Bainov, P Simeonov. Theory of impulsive differential equations [ M ]. Singapor: World scientific,1989.
  • 5Jiao Jianjun,Pang Guoping, Chen Lansun, et al. A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator [ J ]. Applied Mathematics and Computation,2008,195 ( 1 ) : 316-325.
  • 6Jiao Jianjun,Chen Lansun. Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators [ J ]. International Journal of Biomathematics, 2008,1 (2) : 197-208.
  • 7Jiao J, Yang X, Chen L, et al. Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input [ J]. Chaos,Solitons and Fraetals ,2009,42:502-513.
  • 8Zhao L C,Zhang Q L,Yang Q c. Optimal impulsive harvesting for fish population[ J]. Journal of System Science and Complexity, 2003,16 (4) :466 -474.
  • 9Yosef Cohen. Application of Control Theory in Ecology[ M]. London:Spring Verlag, 1982.
  • 10Blaquiere A. Differential games with piece-wise continuous trajectories [ M ]. Londrn: Springer Verlag, 1977.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部