摘要
考虑非线性方程的求根问题,将方程f(x)=0的求根问题转化为求函数g(x)=[f(x)]2极小值的问题.利用优化技术中的三点二次插值法求解,在不需要计算导数的情况下给出一种具有超线性收敛的迭代算法.
This paper concerns with the problem of solving nonlinear equation. It is shown that solving nonlinear equation f(x) = 0 is equivalent to the evaluation extremum of function g (x) = [f(x) ]^2. Based on three-points quadratic interpolation, an algorithm is provided for solving nonlinear equation.
出处
《南阳师范学院学报》
CAS
2008年第12期19-21,共3页
Journal of Nanyang Normal University
基金
南京信息工程大学<数值计算方法>精品课程建设项目(JG032006J03)
关键词
优化技术
三点二次插值法
方程求根
extract roots using optimization technology
three-points quadratic interpolation
solving nonlinear equation