期刊文献+

非自治Lotka-Volterra型捕食扩散系统中有害时滞对该系统持久性的影响(英文)

Profitless Delays for Permanence in Nonautomous Lotka-Volterra Predator-Prey Dispersal Systems
下载PDF
导出
摘要 研究了时滞对一类非自治Lotka-Volterra型捕食扩散系统的影响,该系统由n个斑块组成,食饵种群可以在斑块间迁移,而捕食者限制在某一个斑块不能扩散.我们假设密度制约项系数并不总是严格正的.通过运用比较定理及时滞泛函微分方程的基本原理,分两种情况表明了在一定条件下系统是一致持久的.两种情况的结果表明时滞的引入和变化即可能是"有害",也可能是"无害".进一步还说明了系统在一致持久性的条件下至少存在一个正周期解.这些结果是对已知的非自治Lotka-Volterra系统的一些结果的推广与改进. This paper studies the effect of time delays on a nonautonomous Lotka- Volterra predator-prey dispersal system which consists of n-patches, the prey species can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. We study the delayed Lotka-Volterra system where the coefficients of dependent density terms are not always strictly positive. By using comparison theorem and delays functional differential equation basic theory, we show that the system is uniformly persistent under some appropriate conditions in two cases. Our results suggest that under some conditions, the introduction and the variance of the time delays can be both harmless and profitless, Further, by using fixed point theorem, we obtain that there is at least a positive periodic solution under conditions for the permanence of system. These results are basically an extension and improvement of the known results for nonautonomous Lotka-Volterra systems.
出处 《生物数学学报》 CSCD 北大核心 2008年第4期594-604,共11页 Journal of Biomathematics
基金 National Natural Science Foundation of China(10471117) Science and Development Foundation of SDUST(05g016)
关键词 时滞 扩散 持久性 非自治Lotka-Volterra系统 周期解 Time delay Dispersal Permanence Nonautonomous Lotka-Volterra systems Periodic solution
  • 相关文献

参考文献12

  • 1Bereketoglu H, Gyori I. Global asymptotic stability in a nonautonomous Lotka-Volterra type systems with infinite delay[J]. Journal of Mathematical Analysis and Applications, 1997, 21(}(1): 279-291.
  • 2Teng Z D, Yu Y. Some new results of nonautonomous Lotka-Volterra Competitive systems with delays[J]. Journal of Mathematical Analysis and Applications, 2000, 241(2): 254-275.
  • 3Jin Z, Ma Z E. Stability for a competitive Lotka-Volterra system with delays[J]. Nonlinear Analysis, 2002, 51: 1131-1142.
  • 4Liu S Q,Chen L S. Permanence,extinction and balancing survival in nonautomous Lotka-Volterra system with delays[J]. Applied Mathematics and Computation, 2002, 129(2): 481-499.
  • 5Kuang Y. Delay differential equatioms with applications in population dynamics[M].Academic press, inc, 1993.
  • 6Cui J A, Chen L S. The effects of habitat fragmentation and ecological invasion on population sizes [J]. Computers and Mathematics with Application.s, 1999, 38(1): 1-11.
  • 7Meng Xinzhu Zhang Tongqian Liu Hongxia.ASYMPTOTIC PROPERTY FOR A LOTKA-VOLTERRA COMPETITIVE SYSTEM WITH DELAYS AND DISPERSION[J].Annals of Differential Equations,2005,21(3):378-384. 被引量:4
  • 8Song X Y. Conditions for Global Attractivity of n-Patches Predaor-Prey Dispersion-Delay Models[J]. Journal of Mathematical Analysis and Applications, 2001, 253(1): 1-15.
  • 9Cui J A. Chen L S. The effect of diffusion on the time varying logistic population growth[J]. Computers and Mathematics with Applications, 1998, 36(3): 1-9.
  • 10Lu Z H. Takeuchi,Y. Permanence and global attractivity for competitive Lotka-Volterra systems with delay[J]. Nonlinear Analysis, 1994, 22(7): 847-856.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部